A Modified Fuzzy Lee-Carter Method for Modeling Human Mortality

Duygun Fatih Demirel, Melek Basak

Abstract

Human mortality modeling and forecasting are important study fields since mortality rates are essential in financial and social policy making. Among many others, Lee Carter (LC) model is one of the most popular stochastic method in mortality forecasting. Koissi and Shapiro fuzzified the standard LC model and eliminated the assumptions of homoscedasticity and the ambiguity on the size of the error term variances. In this study, a modified version of fuzzy LC model incorporating singular value decomposition (SVD) technique is proposed. Utilizing SVD instead of ordinary least squares in the fuzzy LC model allows the model to capture existing fluctuations in mortality rates and yields a better fit. The proposed method is applied to Finland mortality data for years 1925 to 2009. The results are compared with Koissi and Shapiro’s fuzzy LC method and the standard LC method. Numerical findings show that proposed method gives statistically better results in generating small spreads and in estimating mortality rates when compared with Koissi and Shapiro’s method.

References

  1. Ahcan, A., Medved, D., Olivieri, A. and Pitacco, E. (2014) 'Forecasting mortality for small populations by mixing mortality data', Insurance: Mathematics and Economics, vol. 54, pp. 12-27.
  2. Ahmadi, S. S. and Li, J. S. (2014) 'Coherent mortality forecasting with generalized linear models: A modified time-transformation approach', Insurance: Mathematics and Economics, vol. 59, pp. 194-221.
  3. Booth, H. (2006) 'Demographic forecasting: 1980 to 2005 in review', International Journal of Forecasting, vol. 22, pp. 547-581.
  4. Brouhns, N., Denuit, M. and Vermunt, J. K. (2002) 'A Poisson log-bilinear approach to the construction of projected life tables', Insurance: Mathematics & Economics, vol. 31, no. 3, pp. 373-393.
  5. Chang, Y. H. O. and Ayyub, B. M. (2001) 'Fuzzy regression methods - A comparative assessment', Fuzzy Sets and Systems, vol. 119, pp. 187-203.
  6. Christiansen, M. C., Niemeyer, A. and Teigiszerová L. (2015) 'Modeling and forecasting duration-dependent mortality rates', Computational Statistics and Data Analysis, vol. 83, pp. 65-81.
  7. Currie, I. D., Durban, M. and Eilers, P. H. C. (2004) 'Smoothing and forecasting mortality rates', Statistical Modelling, vol. 4, no. 4, pp. 279-298.
  8. Danesi, I. L., Haberman, S. and Millossovich, P. (2015) 'Forecasting mortality in subpopulations using LeeCarter type models: A comparison', Insurance: Mathematics and Economics, vol. 62, pp. 151-161.
  9. De Jong, P and Tickle, L. (2006) 'Extending Lee-Carter Mortality Forecasting', Mathematical Population Studies, vol. 13, pp. 1-18.
  10. Diamond, P. (1988) 'Fuzzy least squares', Information Sciences, vol. 46, pp. 141-157.
  11. French, D. (2014) 'International mortality modelling - An economic perspective', Economics Letters, vol. 122, pp. 182-186.
  12. Giacometti, R., Bertocchi, M., Rachev, S. T. and Fabozzi, F. J. (2012) 'A comparison of the Lee-Carter model and AR-ARCH model for forecasting mortality rates', Insurance: Mathematics and Economics, vol. 50, pp. 85-93.
  13. Hatzopulos, P. and Haberman, S. (2011) 'A dynamic parameterization modeling for the age-period-cohort mortality', Insurance: Mathematics and Economics, vol. 49, pp. 155-174.
  14. Hyndman, R. J. and Ullah, M. S. (2007) 'Robust forecasting of mortality and fertility rates: A functional data approach', Computational Statistics & Data Analysis, vol. 51, pp. 4942-4956.
  15. Keyfitz, N. (1988) Applied Mathematical Demography, New York: John Wiley.
  16. Koissi, M. C. and Shapiro, A. F. (2006) 'Fuzzy formulation of Lee-Carter model for mortality forecasting', Insurance: Mathematics and Economics, vol. 39, pp. 287-309.
  17. Lazar, D. and Denuit, M. (2009) 'A multivariate time series approach to projected life tables', Applied Stochastic Models in Business & Industry, vol. 25 no. 6, pp. 806-823.
  18. Lee, R. D. (2000) 'The Lee-Carter method for forecasting mortality, with various extensions and applications', North American Actuarial Journal, vol. 1 no. 4, pp. 80-91.
  19. Lee, R. D. and Carter, L. R. (1992) 'Modelling and Forecasting US Mortality', Journal of American Statistical Association, vol. 87, pp. 659-671.
  20. Lee, R. D. and Tuljapurkar, S. (1994) 'Stochastic Population Projections for the U.S.: Beyond High, Medium and Low', Journal of the American Statistical Association, vol. 89 no. 428, pp. 1175-1189.
  21. Li, S. H. and Chan, W. S. (2005) 'Outlier analysis and mortality forecasting: The United Kingdom and Scandinavian countries' Scandinavian Actuarial Journal, vol. 3, pp. 187-211.
  22. Lindh, T. (2003) 'Demography as a forecasting tool', Futures, vol. 35, pp. 37-48.
  23. Mandel, J. (1982) 'Use of the singular value decomposition in regression analysis', The American Statistician, vol. 36, no. 1, pp. 15-24.
  24. Meisar, R. (1997) 'Shape preserving additions of fuzzy intervals', Fuzzy Sets and Systems, vol. 86, pp. 73-78.
  25. Nelder, J. A. and Mead, R. (1965) 'A Simplex Method for Function Minimization', The Computer Journal, vol. 7 no. 4, pp. 308-313.
  26. Renshaw, A. E. and Haberman, S. (2003) 'Lee-Carter mortality forecasting with age specific enhancement', Insurance: Mathematics and Economics, vol 33, no. 2, pp. 255-272.
  27. Tanaka, H., Uejima, S. and Asai, K. (1982) 'Linear regression analysis with fuzzy model', IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 2, pp. 903-907.
Download


Paper Citation


in Harvard Style

Demirel D. and Basak M. (2015). A Modified Fuzzy Lee-Carter Method for Modeling Human Mortality . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 17-24. DOI: 10.5220/0005581700170024


in Bibtex Style

@conference{fcta15,
author={Duygun Fatih Demirel and Melek Basak},
title={A Modified Fuzzy Lee-Carter Method for Modeling Human Mortality},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015)},
year={2015},
pages={17-24},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005581700170024},
isbn={978-989-758-157-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (ECTA 2015)
TI - A Modified Fuzzy Lee-Carter Method for Modeling Human Mortality
SN - 978-989-758-157-1
AU - Demirel D.
AU - Basak M.
PY - 2015
SP - 17
EP - 24
DO - 10.5220/0005581700170024