GPGPU Vs Multiprocessor SPSO Implementations to Solve Electromagnetic Optimization Problems

Anton Duca, Laurentiu Duca, Gabriela Ciuprina, Daniel Ioan

Abstract

This paper studies two parallelization techniques for the implementation of a SPSO algorithm applied to optimize electromagnetic field devices, GPGPU and Pthreads for multiprocessor architectures. The GPGPU and Pthreads implementations are compared in terms of solution quality and speed up. The electromagnetic optimization problems chosen for testing the efficiency of the parallelization techniques are the TEAM22 benchmark problem and Loney’s solenoid problem. As we will show, there is no single best parallel implementation strategy since the performances depend on the optimization function.

References

  1. Bastos-Filho, Oliveira Junior, Nascimento, A. D. Ramos, 2010. Impact of the Random Number Generator Quality on Particle Swarm Optimization Algorithm Running on Graphic Processor Units. Proceedings of the 10th International Conference on Hybrid Intelligent Systems, pp. 85-90.
  2. Bratton, Kennedy, 2007. Defining a standard for particle swarm optimization. Proceedings of the IEEE Swarm Intelligence Symposium, 2007.
  3. Castro-Liera, Castro-Liera, Antonio-Castro, 2011. Parallel particle swarm optimization using GPGPU. Proceedings of the 7th Conference on Computability in Europe (CIE-2011).
  4. Chen, Rebican, Yusa, Miya, 2006. Fast simulation of ECT signal due to a conductive crack of arbitrary width. IEEE Transactions on Magnetics, vol. 42, pp. 683- 686.
  5. Ciuprina, Ioan, Munteanu, 2002. Use of intelligent-particle swarm optimization in electromagnetics. IEEE Transactions on Magnetics, vol. 38 (2), pp. 1037- 1040.
  6. Clerc, 2012. Standard particle swarm optimization. Open access archive HAL (http://clerc.maurice.free.fr/pso/ SPSO_descriptions.pdf).
  7. Di Barba, Gottvald, Savini, 1995. Global optimization of Loney's solenoid: A benchmark problem. Int. J. Appl. Electromagn. Mech., vol. 6, no. 4, pp. 273-276.
  8. Di Barba, Savini, 1995. Global optimization of Loney's solenoid by means of a deterministic approach. Int. J. Appl. Electromagn. Mech., vol. 6, no. 4, pp. 247-254.
  9. Duca, Duca, Ciuprina, Yilmaz, Altinoz, 2014, PSO Algorithms and GPGPU Technique for Electromagnetic Problems, in the International Workshops on Optimization and Inverse Problems in Electromagnetism (OIPE), Delft, The Netherlands. (under review process, to be published by an ISI indexed journal).
  10. Duca, Rebican, Janousek, Smetana, Strapacova, 2014. PSO Based Techniques for NDT-ECT Inverse Problems. In Electromagnetic Nondestructive Evaluation (XVII), vol. 39, pp. 323 - 330. Capova, K., Udpa, L., Janousek, L., and Rao, B.P.C. (Eds.), IOS Press, Amsterdam.
  11. Duca, Tomescu, 2006. A Distributed Hybrid Optimization System for NDET Inverse Problems. In Proceedings of the International Symposium of Nonlinear Theory and its Applications (NOLTA), pp. 1059 - 1062. Bologna, Italy.
  12. Han, Wang, Fan, 2013. The Research of PID Controller Tuning Based on Parallel Particle Swarm Optimization. Applied Mechanics and Materials - Artificial Intelligence and Computational Algorithms, vol. 433-435, pp. 583-586.
  13. Hung, Wang, 2012. Accelerating parallel particle swarm optimization via GPU. Optimization Methods & Software, vol. 27, no. 1, pp. 33-51.
  14. Ioan, Ciuprina, Szigeti, 1999. Embedded stochasticdeterministic optimization method with accuracy control. IEEE Transactions on Magnetics, vol. 35 , pp. 1702-1705.
  15. Kennedy, Eberhart, 1995. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948.
  16. Li, Udpa, Udpa, 2004. Three-dimensional defect reconstruction from eddy-current NDE signals using a genetic local search algorithm. In IEEE Transaction on Magnetics (2), vol. 40, pp. 410 - 417.
  17. MPI, 2015. http://en.wikipedia.org/wiki/ Message_Passing_Interface.
  18. Mussi, Cagnoni, Daolio, 2009. GPU-Based Road Sign Detection using Particle Swarm Optimization. Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 7809), pp. 152-157.
  19. Mussi, Cagnoni, 2009. Particle Swarm Optimization within the CUDA Architecture. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO'09).
  20. Mussi, Daolio, Cagnoni, 2011. Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture. Information Sciences, pp. 4642- 4657.
  21. Nvidia CUDA C programming guide, 2015. http:// docs.nvidia.com/cuda/cuda-c-programming-guide.
  22. OpenMP, 2015. http://www.openmp.org.
  23. Pan, Tasgetiren, Liang, 2008. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem with makespan and total flowtime criteria. Journal Computers & Operations Research, vol. 35, pp. 2807-2839.
  24. POSIX Threads standard, 2008. http://standards. ieee.org/findstds/standard/1003.1-2008.html.
  25. POSIX Threads tutorial, 2015. http://en.wikipedia.org/wiki/POSIX_Threads.
  26. Roberge, Tarbouchi, 2013. Comparison of parallel particle swarm optimizers for graphical processing units and multicore processors. International Journal of Computational Intelligence and Applications, vol. 12.
  27. Solomon, Thulasiraman, Thulasiram, 2011. Collaborative Multi-Swarm PSO for Task Matching using Graphics Processing Units. Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO'11).
  28. Sun, Fang, Palade, Wua, Xu, 2011. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Applied Mathematics and Computation, vol. 218, pp. 3763-3775.
  29. Takagi, Fukutomi, 2001. Benchmark activities of eddy current testing for steam generator tubes. In Electromagnetic Nondestructive Evaluation (IV), vol. 17, pp. 235 - 252. J. Pavo, R. Albanese, T. Takagi and S. S. Udpa (Eds.), IOS Press, Amsterdam.
  30. Tanji, Matsushita, Sekiya, 2011. Acceleration of PSO for Designing Class E Amplifier. International Symposium on Nonlinear Theory and its Applications (NOLTA), pp. 491-494.
  31. TEAM22 benchmark problem, 2015. http://www.compumag.org/jsite/team.html.
  32. Thomas, Pattery, Hassaina, 2013. Optimum capacity allocation of distributed generation units using parallel PSO using Message Passing Interface. International Journal of Research in Engineering and Technology, vol. 2, pp. 216-219.
  33. Wang, Wang, Yan, Wang, 2008. An adaptive version of parallel MPSO with OpenMP for Uncapacitated Facility Location problem. Control and Decision Conference (CCDC), pp. 2387 - 2391.
  34. Zhao-Hua, Jing-Xing, Wen, 2014. Multi-core based parallelized cooperative PSO with immunity for large scale optimization problem. Conference on Cloud Computing and Internet of Things, pp. 96-100.
  35. Zhou, Tan, 2009. GPU-based Parallel Particle Swarm Optimization. Proceedings of the IEEE Congress on Evolutionary Computation (CEC'09), pp. 1493-1500.
Download


Paper Citation


in Harvard Style

Duca A., Duca L., Ciuprina G. and Ioan D. (2015). GPGPU Vs Multiprocessor SPSO Implementations to Solve Electromagnetic Optimization Problems . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA, ISBN 978-989-758-157-1, pages 64-73. DOI: 10.5220/0005596000640073


in Bibtex Style

@conference{ecta15,
author={Anton Duca and Laurentiu Duca and Gabriela Ciuprina and Daniel Ioan},
title={GPGPU Vs Multiprocessor SPSO Implementations to Solve Electromagnetic Optimization Problems},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,},
year={2015},
pages={64-73},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005596000640073},
isbn={978-989-758-157-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,
TI - GPGPU Vs Multiprocessor SPSO Implementations to Solve Electromagnetic Optimization Problems
SN - 978-989-758-157-1
AU - Duca A.
AU - Duca L.
AU - Ciuprina G.
AU - Ioan D.
PY - 2015
SP - 64
EP - 73
DO - 10.5220/0005596000640073