There is Noisy Lunch: A Study of Noise in Evolutionary Optimization Problems

Juan J. Merelo, Federico Liberatore, Antonio Fernández Ares, Rubén García, Zeineb Chelly, Carlos Cotta, Nuria Rico, Antonio M. Mora, Pablo García-Sánchez


Noise or uncertainty appear in many optimization processes when there is not a single measure of optimality or fitness but a random variable representing it. These kind of problems have been known for a long time, but there has been no investigation of the statistical distribution those random variables follow, assuming in most cases that it is distributed normally and, thus, it can be modelled via an additive or multiplicative noise on top of a non-noisy fitness. In this paper we will look at several uncertain optimization problems that have been addressed by means of Evolutionary Algorithms and prove that there is no single statistical model the evaluations of the fitness functions follow, being different not only from one problem to the next, but in different phases of the optimization in a single problem.


  1. Aizawa, A. N. and Wah, B. W. (1994). Scheduling of genetic algorithms in a noisy environment. Evolutionary Computation, 2(2):97-122.
  2. Arnold, D. (2001). Evolution strategies in noisy environments-a survey of existing work. In Theoretical aspects of evolutionary computing, pages 239- 250. Springer-Verlag.
  3. Bhattacharya, M., Islam, R., and Mahmood, A. (2014). Uncertainty and evolutionary optimization: A novel approach. In Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on, pages 988- 993.
  4. Castillo, P. A., González, J., Merelo-Guerv ós, J.-J., Prieto, A., Rivas, V., and Romero, G. (1999). G-Prop-III: Global optimization of multilayer perceptrons using an evolutionary algorithm. In GECCO-99: Proceedings Of The Genetic And Evolutionary Computation Conference, page 942.
  5. Cauwet, M.-L., Liu, J., Teytaud, O., et al. (2014). Algorithm portfolios for noisy optimization: Compare solvers early. In Learning and Intelligent Optimization Conference.
  6. Costa, A., Vargas, P., and Tinós, R. (2013). Using explicit averaging fitness for studying the behaviour of rats in a maze. In Advances in Artificial Life, ECAL, volume 12, pages 940-946.
  7. Fernández-Ares, A., Mora, A. M., Guervós, J. J. M., García-S ánchez, P., and Fernandes, C. (2011). Optimizing player behavior in a real-time strategy game using evolutionary algorithms. In IEEE Congress on Evolutionary Computation, pages 2017-2024. IEEE.
  8. Friedrich, T., Kötzing, T., Krejca, M., and Sutton, A. M. (2015). The Benefit of Sex in Noisy Evolutionary Search. ArXiv e-prints.
  9. García-Ortega, R. H., Garc ía-S ánchez, P., Mora, A. M., and Merelo, J. (2014). My life as a sim: evolving unique and engaging life stories using virtual worlds. In ALIFE 14: The Fourteenth Conference on the Synthesis and Simulation of Living Systems, volume 14, pages 580-587.
  10. Hansen, N., Finck, S., Ros, R., and Auger, A. (2009). Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions.
  11. Jin, Y. and Branke, J. (2005). Evolutionary optimization in uncertain environments - a survey. IEEE Transactions on Evolutionary Computation, 9(3):303-317. cited By (since 1996)576.
  12. Jun-hua, L. and Ming, L. (2013). An analysis on convergence and convergence rate estimate of elitist genetic algorithms in noisy environments. Optik - International Journal for Light and Electron Optics, 124(24):6780 - 6785.
  13. Liberatore, F., Mora, A., Castillo, P., and Merelo, J. (2015). Comparing heterogeneous and homogeneous flocking strategies for the ghost team in the game of ms. pacman. Computational Intelligence and AI in Games, IEEE Transactions on, PP(99):1-1.
  14. Liu, J., St-Pierre, D. L., and Teytaud, O. (2014). A mathematically derived number of resamplings for noisy optimization. In Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, GECCO Comp 7814, pages 61-62, New York, NY, USA. ACM.
  15. Lucas, S. M. (2007). Ms pac-man competition. ACM SIGEVOlution, 2(4):37-38.
  16. Merelo, J. J., Castillo, P. A., Mora, A., Fernández-Ares, A., Esparcia-Alcázar, A. I., Cotta, C., and Rico, N. (2014). Studying and tackling noisy fitness in evolutionary design of game characters. In Rosa, A., Merelo, J. J., and Filipe, J., editors, ECTA 2014 - Proceedings of the International Conference on Evolutionary Computation Theory and Applications, pages 76-85.
  17. Merelo-Guervós, J.-J., Prieto, A., and Morán, F. (2001). Optimization of classifiers using genetic algorithms, chapter 4, pages 91-108. MIT press. ISBN: 0262162016; draft available from
  18. Miller, B. L. and Goldberg, D. E. (1996). Genetic algorithms, selection schemes, and the varying effects of noise. Evolutionary Computation, 4(2):113-131.
  19. Mora, A. M., Fernández-Ares, A., Merelo-Guervós, J. J., García-S ánchez, P., and Fernandes, C. M. (2012). Effect of noisy fitness in Real-Time Strategy games player behaviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol., 27(5):1007-1023.
  20. Mora, A. M., Montoya, R., Merelo, J. J., Snchez, P. G., Castillo, P. A., Laredo, J. L. J., Martnez, A. I., and Espacia, A. (2010). Evolving bots ai in unreal. In di Chio et al., C., editor, Applications of Evolutionary Computing, Part I, volume 6024 of Lecture Notes in Computer Science, pages 170-179, Istanbul, Turkey. Springer-Verlag.
  21. Pen˜alver, J. G. and Merelo, J.-J. (1998). Optimizing web page layout using an annealed genetic algorithm as client-side script. In Proceedings PPSN, Parallel Problem Solving from Nature V, number 1967 in Lecture Notes in Computer Science, pages 1018-1027. SpringerVerlag. 2gqqar9cv3et5nlg.
  22. Qian, C., Yu, Y., Jin, Y., and Zhou, Z.-H. (2014). On the effectiveness of sampling for evolutionary optimization in noisy environments. In Bartz-Beielstein, T., Branke, J., Filipic, B., and Smith, J., editors, Parallel Problem Solving from Nature PPSN XIII, volume 8672 of Lecture Notes in Computer Science, pages 302-311. Springer International Publishing.
  23. Qian, C., Yu, Y., and Zhou, Z.-H. (2013). Analyzing evolutionary optimization in noisy environments. CoRR, abs/1311.4987.
  24. Rada-Vilela, J., Johnston, M., and Zhang, M. (2014). Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems. Swarm and Evolutionary Computation, 0(0):-. In press.
  25. Rakshit, P., Konar, A., and Nagar, A. (2014). Artificial bee colony induced multi-objective optimization in presence of noise. In Evolutionary Computation (CEC), 2014 IEEE Congress on, pages 3176-3183.
  26. Rudolph, G. (2001). A partial order approach to noisy fitness functions. In Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, volume 1, pages 318-325.
  27. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83.

Paper Citation

in Harvard Style

Merelo J., Liberatore F., Fernández Ares A., García R., Chelly Z., Cotta C., Rico N., Mora A. and García-Sánchez P. (2015). There is Noisy Lunch: A Study of Noise in Evolutionary Optimization Problems . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA, ISBN 978-989-758-157-1, pages 261-268. DOI: 10.5220/0005600702610268

in Bibtex Style

author={Juan J. Merelo and Federico Liberatore and Antonio Fernández Ares and Rubén García and Zeineb Chelly and Carlos Cotta and Nuria Rico and Antonio M. Mora and Pablo García-Sánchez},
title={There is Noisy Lunch: A Study of Noise in Evolutionary Optimization Problems},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,},

in EndNote Style

JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,
TI - There is Noisy Lunch: A Study of Noise in Evolutionary Optimization Problems
SN - 978-989-758-157-1
AU - Merelo J.
AU - Liberatore F.
AU - Fernández Ares A.
AU - García R.
AU - Chelly Z.
AU - Cotta C.
AU - Rico N.
AU - Mora A.
AU - García-Sánchez P.
PY - 2015
SP - 261
EP - 268
DO - 10.5220/0005600702610268