KISS MIR: Keep It Semantic and Social Music Information Retrieval

Amna Dridi, Mouna Kacimi

Abstract

While content-based approaches for music information retrieval (MIR) have been heavily investigated, usercentric approaches are still in their early stage. Existing user-centric approaches use either music-context or user-context to personalize the search. However, none of them give the possibility to the user to choose the suitable context for his needs. In this paper we propose KISS MIR, a versatile approach for music information retrieval. It consists in combining both music-context and user-context to rank search results. The core contribution of this work is the investigation of different types of contexts derived from social networks. We distinguish semantic and social information and use them to build semantic and social profiles for music and users. The different contexts and profiles can be combined and personalized by the user. We have assessed the quality of our model using a real dataset from Last.fm. The results show that the use of user-context to rank search results is two times better than the use of music-context. More importantly, the combination of semantic and social information is crucial for satisfying user needs.

References

  1. Arjannikov, T., Sanden, C., and Zhang, J. (2013). Verifying tag annotations through association analysis. In Proceedings of International Society of Music Information Retrieval (ISMIR), pages 195-200. ACM.
  2. Boland, D. and Murray-Smith, R. (2014). Informationtheoretic measures of music listening behaviour. In Proceedings of ISMIR, pages 561-566. ACM.
  3. Braunhofer, M., Kaminskas, M., and Ricci, R. (2013). Location-aware music recommendation. 2(1):31-44.
  4. Bugaychenko, D. and Dzuba, A. (2013). Musical recommendations and personalization in a social network. In Proceedings of RecSys, pages 367-370. ACM.
  5. Casey, M., Veltkamp, R., Gosto, M., Leman, M., Rhodes, C., and Slaney, M. (2008). Content-based mir: Current directions and future challenges. In Proceedings of IEEE. IEEE.
  6. Celma, O., Ramirez, M., and Herrara, P. (2005). Foafing the music: A music recommendation system based on rss feeds and user preferences. In Proceedings of ISMIR, pages 464-467. ACM.
  7. Chedrawy, Z. and Abidi, S. (2009). A web recommender system for recommending predicting and personalizing music palylists. In Proceedings of WISE, pages 335-342. Springer.
  8. Chen, H. and Chen, A. L. P. (2001). A music recommendation system based on music data grouping and user interests. In Proceedings of CIKM, pages 231-238. ACM.
  9. Feng, Y., Zhuang, Y., and Yunhe, P. (2003). Music information retrieval by detecting mood via computational media aesthetics. In Proceedings of WI, pages 235- 241. ACM, IEEE.
  10. Herrara, O. C. (2009). Music Recommendation and Discovery in the Long Tail. PhD thesis.
  11. Hoachi, K., Matsumoto, K., and Inoue, N. (2003). Personalization of user profiles for content-based music retrieval based on relevance feedback. In Proceedings of MULTIMEDIA, pages 110-119. ACM.
  12. Huron, D. (2000). Perceptual and cognitive applications in music information retrieval. In Proceedings of ISMIR. ACM.
  13. Kaminskas, M. and Ricci, F. (2011). Location-adapted music recommendation using tags. In Proceedings of UMAP.
  14. Kaminskas, M. and Ricci, F. (2012). Contextual music information retrieval and recommendation: State of the art and challenges.
  15. Knees, P., Pohle, T., Schedl, M., and Widmer, G. (2007). A music search engine built upon audio-based and webbased similarity measures. In Proceedings of SIGIR, pages 447-454. ACM.
  16. Knees, P., Schedl, M., and Celma, O. (2013). Hybrid music information retrieval. In Proceedings of ISMIR, pages 1-2. ACM.
  17. Lamere, P. (2008). Social tagging and music information retrieval. 37(2):101-114.
  18. Lee, H. and Neal, D. (2007). Toward web 2.0 music information retrieval: Utilizing emotion-based, user assigned descriptors. 44:1-34.
  19. Li, T. and Ogihara, M. (2006). Toward intelligent music retrieval. In Proceedings of MULTIMEDIA, volume 8, pages 564-574.
  20. Pohle, T., Shen, J., Knees, P., Schedl, M., and Widmer, G. (2007). Building an interactive next-generation artist recommender. In CBMI. IEEE.
  21. Saari, P., Eerola, T., Fazekas, G., Barthet, M., Lartillot, O., and Sandlen, M. (2013). The role of audio and tags in music mood prediction. In Proceedings of ISMIR. ACM.
  22. Sanden, C. and zhang, J. (2011). An empirical study of multi-label classifiers for music tag annotation. In Proceedings of ISMIR, pages 717-722. ACM.
  23. Schedl, M. and Flexer, A. (2012). Putting the user in the center of music information retrieval. In Proceedings of ISMIR, pages 385-390. ACM.
  24. Smiraglia, R. (2001). Musical works as information retrieval entities epistemological perspectives. In Proceedings of ISMIR, pages 85-91. ACM.
  25. Weigl, D. and Guastavino, C. (2011). User studies in the music information retrieval literature. In Proceeding of ISMIR, pages 335-340. ACM.
  26. Y.Song, Dixon, S., Pearce, M., and Halpern, A. (2013). Do online social tags predict perceived or induced emotional responses to music? In Proceeding of ISMIR, pages 89-94. ISMIR.
  27. Y.Song, S. Dixon, M. P. (2012). A survey of music recommendation systems and future perspectives. In Proceedings of CMMR, pages 395-410.
  28. Zhang, B., Shen, J., Xiang, Q., and Wang, Y. (2009). Icompositemap: a novel framework for music similarity. In Proceedings of SIGIR, pages 403-410. ACM.
Download


Paper Citation


in Harvard Style

Dridi A. and Kacimi M. (2015). KISS MIR: Keep It Semantic and Social Music Information Retrieval . In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015) ISBN 978-989-758-158-8, pages 433-439. DOI: 10.5220/0005616704330439


in Bibtex Style

@conference{kdir15,
author={Amna Dridi and Mouna Kacimi},
title={KISS MIR: Keep It Semantic and Social Music Information Retrieval},
booktitle={Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015)},
year={2015},
pages={433-439},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005616704330439},
isbn={978-989-758-158-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015)
TI - KISS MIR: Keep It Semantic and Social Music Information Retrieval
SN - 978-989-758-158-8
AU - Dridi A.
AU - Kacimi M.
PY - 2015
SP - 433
EP - 439
DO - 10.5220/0005616704330439