Ephemeral Computing and Bioinspired Optimization - Challenges and Opportunities

Carlos Cotta, Antonio J. Fernández-Leiva, Francisco Fernández de Vega, Francisco Chávez, Juan J. Merelo, Pedro A. Castillo, David Camacho, Gema Bello-Orgaz


Computational devices with significant computing power are pervasive yet often under-exploited since they are frequently idle or performing non-demanding tasks. Exploiting this power can be a cost-effective solution for solving complex computational tasks. Device-wise, this computational power can some times comprise a stable, long-lasting availability windows but it will more frequently take the form of brief, ephemeral bursts, mainly in the presence of devices “lent” voluntarily by their users. A highly dynamic and volatile computational landscape emerges from the collective contribution of numerous such devices. Algorithms consciously running on these environments require specific properties in terms of flexibility, plasticity and robustness. Bioinspired algorithms are particularly well suited to this endeavor, thanks to their intrinsic features: decentralized functioning, intrinsic parallelism, resilience, and adaptiveness. The latter is essential to exert advanced self-control on the functioning and/or structure of the algorithm. Much has been done in providing self-adaptation capabilities to these techniques, yet the science of self-? bionspired algorithms is still nascent, in particular regarding to higher-level self-adaptation, and self-management in the context of large scale optimization problems and distributed ephemeral computing technologies. Deploying bioinspired techniques on this scenario will also pave the way for the application of other techniques on this computational domain.


  1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr, T. F., Nagpal, R., Rauch, E., Sussman, G. J., and Weiss, R. (2000). Amorphous computing. Communications of the ACM, 43(5):74-82.
  2. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4):50-58.
  3. Babaoglu, O. et al., editors (2005). Self-star Properties in Complex Information Systems, volume 3460 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg.
  4. Bello-Orgaz, G., Menéndez, H., Okazaki, S., and Camacho, D. (2014). Combining social-based data mining techniques to extract collective trends from twitter. Malaysian Journal of Computer Science, 27(2).
  5. Bello-Orgaz, G., Menendez, H. D., and Camacho, D. (2012). Adaptive k-means algorithm for overlapped graph clustering. International journal of neural systems, 22(05).
  6. Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Inc., New York, NY, USA.
  7. Borella, M. S., Grabelsky, D., Nessett, D. M., and Sidhu, I. S. (2000). Method and system for locating network services with distributed network address translation. US Patent 6,055,236.
  8. Cambria, E., Rajagopal, D., Olsher, D., and Das, D. (2013). Big social data analysis. Big data computing, 13:401- 414.
  9. Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et systems repartis, 10(2):141-171.
  10. Cotta, C., Sevaux, M., and Sörensen, K., editors (2008). Adaptive and Multilevel Metaheuristics, volume 136 of Studies in Computational Intelligence. Springer.
  11. Eiben, A. (2005). Evolutionary computing and autonomic computing: Shared problems, shared solutions? In (Babaoglu et al., 2005), pages 36-48.
  12. Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari, A., and Di Marzo Serugendo, G. (2013). Self-healing and self-repairing technologies. International Journal of Advanced Manufacturing Technology, 69(5-8):1033- 1061.
  13. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., 1st edition.
  14. González Lombra n˜a, D., Laredo, J. L. J., Fernández de Vega, F., and Merelo Guervós, J. J. (2010). Characterizing fault-tolerance of genetic algorithms in desktop grid systems. In Evolutionary Computation in Combinatorial Optimization, pages 131-142. Springer.
  15. Gonzalez-Pardo, A. and Camacho, D. (2015). Solving project scheduling problems through swarm-based approaches. International Journal of BioInspired Computation (IJBIC), In press.
  16. Haider, P., Chiarandini, L., and Brefeld, U. (2012). Discriminative clustering for market segmentation. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 7812, pages 417-425, New York, NY, USA. ACM.
  17. Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques. Morgan Kaufmann.
  18. Huhns, M. N. and Singh, M. P. (2005). Service-oriented computing: Key concepts and principles. Internet Computing, IEEE, 9(1):75-81.
  19. Kaisler, S., Armour, F., Espinosa, J. A., and Money, W. (2013). Big data: Issues and challenges moving forward. In System Sciences (HICSS), 2013 46th Hawaii International Conference on, pages 995-1004. IEEE.
  20. Kamil, S., Shalf, J., Oliker, L., and Skinner, D. (2005). Understanding ultra-scale application communication requirements. In Workload Characterization Symposium, 2005. Proceedings of the IEEE International, pages 178-187. IEEE.
  21. Laredo, J. L. J., Castillo, P. A., Mora, A. M., Merelo, J. J., and Fernandes, C. (2008). Resilience to churn of a peer-to-peer evolutionary algorithm. Int. J. High Performance Systems Architecture, 1(4):260-268.
  22. Lohr, S. (2012). The age of big data. New York Times, 11 February. [Online; accessed 5-September-2014].
  23. Lyytinen, K. and Yoo, Y. (2002). Ubiquitous computing. Communications of the ACM, 45(12):63-96.
  24. Manovich, L. (2011). Trending: the promises and the challenges of big social data. Debates in the digital humanities, pages 460-475.
  25. Menéndez, H. D., Barrero, D. F., and Camacho, D. (2014a). A genetic graph-based approach for partitional clustering. International journal of neural systems, 24(03).
  26. Menéndez, H. D., Otero, F. E., and Camacho, D. (2014b). Macoc: a medoid-based aco clustering algorithm. In Swarm Intelligence, pages 122-133. Springer International Publishing.
  27. Network for Sustainable Ultrascale Computing (2014). The future of ultrascale computing under study. [Online; accessed 8-September-2014].
  28. Nogueras, R. and Cotta, C. (2015a). Studying faulttolerance in island-based evolutionary and multimemetic algorithms. Journal of Grid Computing. doi:10.1007/s10723-014-9315-6 [online].
  29. Nogueras, R. and Cotta, C. (2015b). Studying selfbalancing strategies in island-based multimemetic algorithms. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2015.03.047 [online].
  30. Nogueras, R. and Cotta, C. (2015c). Towards resilient multimemetic systems on unstable networks with complex topology. In Papa, G., editor, Advances in Evolutionary Algorithm Research. Nova Science Pub. In Press.
  31. Pascual, A., Barcéna, M., Merelo, J., and Carazo, J.-M. (1999). Application of the fuzzy kohonen clustering network to biological macromolecules images classification. In Mira, J. and Sánchez-Andrés, J., editors, Engineering Applications of Bio-Inspired Artificial Neural Networks, volume 1607 of Lecture Notes in Computer Science, pages 331-340. Springer Berlin Heidelberg.
  32. Sarmenta, L. F. and Hirano, S. (1999). Bayanihan: Building and studying web-based volunteer computing systems using java. Future Generation Computer Systems, 15(5):675-686.
  33. Sharmin, M., Ahmed, S., and Ahamed, S. I. (2005). Saferd (secure, adaptive, fault tolerant, and efficient resource discovery) in pervasive computing environments. In Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on, volume 2, pages 271-276. IEEE.
  34. Stutzbach, D. and Rejaie, R. (2006). Understanding churn in peer-to-peer networks. In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC 7806, pages 189-202, New York, NY, USA. ACM.
  35. Wang, B., Bodily, J., and Gupta, S. K. (2004). Supporting persistent social groups in ubiquitous computing environments using context-aware ephemeral group service. In Pervasive Computing and Communications, 2004. PerCom 2004. Proceedings of the Second IEEE Annual Conference on, pages 287-296. IEEE.

Paper Citation

in Harvard Style

Cotta C., Fernández-Leiva A., Fernández de Vega F., Chávez F., Merelo J., Castillo P., Camacho D. and Bello-Orgaz G. (2015). Ephemeral Computing and Bioinspired Optimization - Challenges and Opportunities . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA, ISBN 978-989-758-157-1, pages 319-324. DOI: 10.5220/0005628903190324

in Bibtex Style

author={Carlos Cotta and Antonio J. Fernández-Leiva and Francisco Fernández de Vega and Francisco Chávez and Juan J. Merelo and Pedro A. Castillo and David Camacho and Gema Bello-Orgaz},
title={Ephemeral Computing and Bioinspired Optimization - Challenges and Opportunities},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,},

in EndNote Style

JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 1: ECTA,
TI - Ephemeral Computing and Bioinspired Optimization - Challenges and Opportunities
SN - 978-989-758-157-1
AU - Cotta C.
AU - Fernández-Leiva A.
AU - Fernández de Vega F.
AU - Chávez F.
AU - Merelo J.
AU - Castillo P.
AU - Camacho D.
AU - Bello-Orgaz G.
PY - 2015
SP - 319
EP - 324
DO - 10.5220/0005628903190324