Web-enabled Neuron Model Hardware Implementation and Testing

Fearghal Morgan, Finn Krewer, Frank Callaly, Aedan Coffey, Brian Mc Ginley

Abstract

This paper presents a prototype web-based Graphical User Interface (GUI) platform for integrating and testing a system that can perform Low-Entropy Model Specification (LEMS) neural network description to Hardware Description Language (VHDL) conversion, and automatic synthesis and neuron implementation and testing on Field Programmable Gate Array (FPGA) testbed hardware. This system enables hardware implementation of neuron components and their connection in a small neural network testbed. This system incorporates functionality for automatic LEMS to synthesisable VHDL translation, automatic VHDL integration with FPGA logic to enable data I/O, automatic FPGA bitfile generation using Xilinx PlanAhead, automated multi- FPGA testbed configuration, neural network parameter configuration and flexible testing of FPGA based neuron models. The prototype UI supports clock step control and real-time monitoring of internal signals. References are provided to video demonstrations.

References

  1. Blau, A., Callaly, F., Cawley, S., Coffey, A., De Mauro, A., Epelde, G. & Wade, J. (2014, October). Exploring neural principles with Si elegans, a neuromimetic representation of the nematode Caenorhabditis elegans. In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX) (pp. 189-194).
  2. Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., & Silver, R. A. (2014). LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2. Frontiers in neuroinformatics, 8.
  3. Carrillo, S., Harkin, J., McDaid, L. J., Morgan, F., Pande, S., Cawley, S., & McGinley, B. (2013). Scalable hierarchical network-on-chip architecture for spiking neural network hardware implementations. Parallel and Distributed Systems, IEEE Transactions on, 24(12), 2451-2461.
  4. Cawley, S., Morgan, F., McGinley, B., Pande, S., McDaid, L., Carrillo, S., & Harkin, J. (2011). Hardware spiking neural network prototyping and application. Genetic Programming and Evolvable Machines, 12(3), 257- 280.
  5. Glackin, B., McGinnity, T. M., Maguire, L. P., Wu, Q. X., & Belatreche, A. (2005). A novel approach for the implementation of large scale spiking neural networks on FPGA hardware. In Computational Intelligence and Bioinspired Systems (pp. 552-563). Springer Berlin.
  6. Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., & Furber, S. B. (2008, June). SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In Neural N, 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on (pp. 2849-2856).
  7. Krewer F., Coffey A., Callaly F. and Morgan F. (2014). Neuron Models in FPGA Hardware - A Route from High Level Descriptions to Hardware Implementations. In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics, (pp 177-183)
  8. Maher, J., Ginley, B. M., Rocke, P., & Morgan, F. (2006, April). Intrinsic hardware evolution of neural networks in reconfigurable analogue and digital devices. In FieldProgrammable Custom Computing Machines, 2006. FCCM'06. 14th Annual IEEE Symposium on (pp. 321- 322). IEEE.
  9. Morgan, F., Cawley, S., McGinley, B., Pande, S., McDaid, L. J., Glackin, B., Maher, J. & Harkin, J. (2009, December). Exploring the evolution of NoC-based spiking neural networks on FPGAs. In FieldProgrammable Technology, 2009. FPT 2009. International Conference on (pp. 300-303). IEEE.
  10. Morgan, F. et al., FPGA NN Prototype Demonstrator Videos. http://tiny.cc/SielegansD51, 2014
  11. Pande, S., Morgan, F., McCawley, S., Ginley, B., Carrillo, S., Harkin, J., & McDaid, L. (2010, September). EMBRACE-SysC for analysis of NoC-based spiking neural network architectures. In International Symposium on System-on-Chip. IEEE.
  12. Rocke, P., McGinley, B., Maher, J., Morgan, F., & Harkin, J. (2008). Investigating the suitability of FPAAs for evolved hardware spiking neural networks. In Evolvable Systems: From Biology to Hardware (pp. 118-129). Springer Berlin Heidelberg.
  13. Rocke, P., McGinley, B., Morgan, F., & Maher, J. (2007). Reconfigurable hardware evolution platform for a spiking neural network robotics controller. In Reconfigurable computing: Architectures, tools and applications (pp. 373-378). Springer Berlin Heidelberg.
Download


Paper Citation


in Harvard Style

Morgan F., Krewer F., Callaly F., Coffey A. and Mc Ginley B. (2015). Web-enabled Neuron Model Hardware Implementation and Testing . In Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015) ISBN 978-989-758-161-8, pages 138-145. DOI: 10.5220/0005713001380145


in Bibtex Style

@conference{nebica15,
author={Fearghal Morgan and Finn Krewer and Frank Callaly and Aedan Coffey and Brian Mc Ginley},
title={Web-enabled Neuron Model Hardware Implementation and Testing},
booktitle={Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015)},
year={2015},
pages={138-145},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005713001380145},
isbn={978-989-758-161-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2015)
TI - Web-enabled Neuron Model Hardware Implementation and Testing
SN - 978-989-758-161-8
AU - Morgan F.
AU - Krewer F.
AU - Callaly F.
AU - Coffey A.
AU - Mc Ginley B.
PY - 2015
SP - 138
EP - 145
DO - 10.5220/0005713001380145