Adapting Processes via Adaptation Processes - A Flexible and Cloud-Capable Adaptation Approach for Dynamic Business Process Management

Roy Oberhauser

Abstract

Dynamic business process management (dBPM) is dependent on automated adaptation techniques. While various approaches to support process adaptation have been explored, they typically involve another or some combination of modeling paradigms or language extensions. Moreover, cross-cutting concerns and a distributed and cloud-based process adaptation capability have not been adequately addressed. This paper introduces AProPro (Adapting Processes via Processes), a flexible and cloud-capable approach towards dBPM that supports adapting target processes using adaptation processes while retaining an intuitive and consistent imperative process paradigm. Based on a case study using a REST-based Web Service prototype realization invoking process adaptation patterns in a distributed of Adaptation-as-a-Service cloud setting, the initial evaluation results show the feasibility of the approach and gauge its performance in the cloud.

References

  1. Burmeister, B., Arnold, M., Copaciu, F. & Rimassa, G. (2008). BDI-agents for agile goal-oriented business processes. In Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems: industrial track . International Foundation for Autonomous Agents and Multiagent Systems, 37-44.
  2. Charfi, A. & Mezini, M. (2007). Ao4bpel: An aspectoriented extension to bpel. World Wide Web, 10(3), 309-344.
  3. Charfi, A., Müller, H. & Mezini, M. (2010). Aspectoriented business process modeling with AO4BPMN. In Modelling Foundations and Applications (pp. 48- 61). Springer Berlin Heidelberg.
  4. de Man, H. (2009, January). Case management: A review of modeling approaches. BPTrends.
  5. Döhring, M., Reijers, H. A. & Smirnov, S. (2014). Configuration vs. adaptation for business process variant maintenance: an empirical study. Information Systems, 39, 108-133.
  6. Döhring, M. & Zimmermann, B. (2011). vBPMN: eventaware workflow variants by weaving BPMN2 and business rules. In Enterprise, Business-Process and Information Systems Modeling (pp. 332-341). Springer Berlin Heidelberg.
  7. Grambow, G., Oberhauser, R. & Reichert, M. (2010). Employing Semantically Driven Adaptation for Amalgamating Software Quality Assurance with Process Management. In Proceedings of the 2nd International Conference on Adaptive and Selfadaptive Systems and Applications, pp. 58-67.
  8. Grambow, G., Oberhauser, R. & Reichert, M. (2011a). Contextual Injection of Quality Measures into Software Engineering Processes. International Journal on Advances in Software, 4(1 & 2), 76-99.
  9. Grambow, G., Oberhauser, R. & Reichert, M. (2011b). Event-driven Exception Handling for Software Engineering Processes. Proc. 5th International Workshop on event-driven Business Process Management, LNBIP 99, 414-426.
  10. Grambow, G., Oberhauser, R. & Reichert, M. (2012). User-centric Abstraction of Workflow Logic Applied to Software Engineering Processes. Proceedings of the 1st Workshop on Human-Centric Process-Aware Information Systems, LNBIP112, 307-321.
  11. Haisjackl, C., Barba, I., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J. & Weber, B. (2014). Understanding Declare models: strategies, pitfalls, empirical results. Software & Systems Modeling, 1-28.
  12. Hallerbach, A., Bauer, T. & Reichert, M. (2010). Capturing variability in business process models: the Provop approach. Journal of Software Maintenance and Evolution: Research and Practice, 22(6-7), 519- 546.
  13. La Rosa, M., Reijers, H. A., Van Der Aalst, W. M., Dijkman, R. M., Mendling, J., Dumas, M. & GarciaBanuelos, L. (2011). APROMORE: An advanced process model repository. Expert Systems with Applications, 38(6), 7029-7040.
  14. La Rosa, M., Wohed, P., Mendling, J., Ter Hofstede, A. H., Reijers, H. A. & van der Aalst, W. M. (2011). Managing process model complexity via abstract syntax modifications. IEEE Transactions on Industrial Informatics, 7(4), 614-629.
  15. Marrella, A., Mecella, M. & Sardina, S. (2014). SmartPM: An Adaptive Process Management System through Situation Calculus, IndiGolog, and Classical Planning. Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press.
  16. Milanovic, M., Gasevic, D. & Rocha, L. (2011). Modeling flexible business processes with business rule patterns. In: Proceedings of the 15th Enterprise Distributed Object Computing Conference (EDOC'11) (pp. 65-74). IEEE.
  17. Minor, M., Bergmann, R., Görg, S. & Walter, K. (2010). Towards case-based adaptation of workflows. In Casebased reasoning. Research and development (pp. 421- 435). Springer Berlin Heidelberg.
  18. Müller, R., Greiner, U. & Rahm, E. (2004). Agentwork: a workflow system supporting rule-based workflow adaptation. Data & Knowledge Engineering, 51(2), 223-256.
  19. Pesic, M., Schonenberg, H. & van der Aalst, W.M.P. (2007). Declare: Full support for loosely-structured processes. Proceedings of the 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC'07) (pp. 287-298). IEEE.
  20. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J. & Reijers, H. A. (2012). Imperative versus declarative process modeling languages: An empirical investigation. In Business Process Management Workshops. Springer Berlin Heidelberg., 383-394.
  21. Reichert, M., Dadam, P., Rinderle-Ma, S., Jurisch, M., Kreher, U. & Göser, K. (2009). Architecural principles and components of adaptive process management technology. In: PRIMIUM - Process Innovation for Enterprise Software. Lecture Notes in Informatics (LNI) (P-151). Koellen-Verlag, 81-97.
  22. Reichert, M. & Weber, B. (2012). Enabling flexibility in process-aware information systems: challenges, methods, technologies. Springer Science & Business Media.
  23. Reijers, H. A., Mendling, J. & Dijkman, R. M. (2011). Human and automatic modularizations of process models to enhance their comprehension. Information Systems, 36(5), 881-897.
  24. Rinderle, S., Reichert, M. & Dadam, P. (2004). Correctness criteria for dynamic changes in workflow systems--a survey. Data & Knowledge Engineering. 50(1). pp. 9-34.
  25. Russell, N., ter Hofstede, A.H.M., van der Aalst,W.M.P. & Mulyar, N. (2006). Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM06-22.
  26. Van der Aalst, W. M., Weske, M. & Grünbauer, D. (2005). Case handling: a new paradigm for business
Download


Paper Citation


in Harvard Style

Oberhauser R. (2015). Adapting Processes via Adaptation Processes - A Flexible and Cloud-Capable Adaptation Approach for Dynamic Business Process Management . In Proceedings of the Fifth International Symposium on Business Modeling and Software Design - Volume 1: BMSD, ISBN 978-989-758-111-3, pages 9-18. DOI: 10.5220/0005885000090018


in Bibtex Style

@conference{bmsd15,
author={Roy Oberhauser},
title={Adapting Processes via Adaptation Processes - A Flexible and Cloud-Capable Adaptation Approach for Dynamic Business Process Management},
booktitle={Proceedings of the Fifth International Symposium on Business Modeling and Software Design - Volume 1: BMSD,},
year={2015},
pages={9-18},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005885000090018},
isbn={978-989-758-111-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Symposium on Business Modeling and Software Design - Volume 1: BMSD,
TI - Adapting Processes via Adaptation Processes - A Flexible and Cloud-Capable Adaptation Approach for Dynamic Business Process Management
SN - 978-989-758-111-3
AU - Oberhauser R.
PY - 2015
SP - 9
EP - 18
DO - 10.5220/0005885000090018