Automated Process Model Discovery - Limitations and Challenges

Norbert Gronau, Christian Glaschke


The implementation of business processes through the use of information systems (ERP, CRM, PLM and MES) has become a key success factor for companies. For further development and optimization of processes, many companies haven´t trusted processes for the analysis. Surveying as-is processes is complex and only possible by manual recording. To perform this task automatically the theory shows us different approaches (process mining, Application Usage Mining and Web Usage Mining). The target of the concepts and tools is to complement the process of continuous improvement in the company with meaningful process models, which can be reconstructed from protocols and user actions in the information systems. This article focuses on the limitations of these concepts and the challenges they present and gives an outlook on how future solutions must work to speed up the process of continuous improvement and to meet the challenges of heterogeneity in IS - architectures.


  1. Accorsi R., Stocker T. (2012). On the Exploitation of Process Mining for Security Audits: The Conformance Checking Case. ACM Symposium on Applied Computing. doi:10.1145/2245276.2232051
  2. Bhart, P. (2014). Prediction Model Using Web Usage Mining Techniques. IJCATR, Volume 3, Issue 12, 827-830. doi: 10.7753/IJCATR0312.1015
  3. Gronau, N. (2015). Trends and Future Research in Enterprise Systems. Lecture Notes in Business Information Processing, Volume 198, 271-280.
  4. Gronau, N., Müller, C., & Korf, R. (2005). KMDL - Capturing, Analysing and Improving KnowledgeIntensive Business Processes. Journal of Universal Computer Science, 11(4), 452-472.
  5. Gronau, N., Sultanow, E. (2014). Echtzeitmeldung und Analysen über Wissensereignisse. IM+io Fachzeitschrift für Innovation, Organisation und Management. 01/2014. 80-87
  6. Houy C., Fettke P., Loos P., Van der Aalst WMP., Krogstie J. (2011). Business process management in the large. Business Information System Engineering 3, 385-388. doi:10.1007/s12599-011-0181-5.
  7. Huang, J., White, R. W., Dumais, S. (2011). No Clicks, No Problem: Using Cursor Movements to Understand and Improve Search. Proceeding CHI 7811 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1225-1234. doi: 10.1145/ 1978942.1979125
  8. Huber, S., (2015). Informationsintegration in dynamischen Unternehmensnetzwerken - Architekturen, Methoden und Anwendungen. Springer. doi: 10.1007/978 -3-658- 07748-8
  9. Johnson, A., Mulder, B., Sijbinga, A., Hulsebos, L. (2012). Action as a Window to Perception: Measuring Attention with Mouse Movements. Applied Cognitive Psychology, Appl. Cognit. Psychol. 26, 802-809. doi:10.1002/acp.2862
  10. Kagermann, H., (2014). Chancen von Industrie 4.0 nutzen. Industrie 4.0 in Produktion, Automatisierung und Logistik. Springer. 603-613. doi: 10.1007/978-3- 658- 04682-8
  11. Kassem, G., Rautenstrauch, C. (2005). Application Usage Mining to Improve Enterprise Workflows: ERP Systems SAP R/3 as Example. IDEA Group Publishing, In:Proceedings of the 2005 Information Resources Management Association International Conference.
  12. Krogstie, J. (2015). Capturing Enterprise Data Integration Challenges Using a Semiotic Data Quality Framework. BISE, 57(1). 27-36
  13. Schemm, J. W. (2009). Zwischenbetriebliches Stammdatenmanagement. Springer Verlag.
  14. Shekappa B., Mallikarjun, A., Shivarama, J. (2015). Best Practices in Digitization: Planning and Workflow Processes. In International Conference on the theme Emerging Technologies and Future of Libraries: Issues and Challenges. 332-340
  15. Sultanow, E., Cox, S., Brockmann, C., Gronau, N. (2015). Real World Awareness via the Knowledge Modeling and Description Language. In M. Khosrow-Pour (Ed.), Encyclopedia of Information Science and Technology, Third Edition, 5224-5234. doi:10.4018/978-1-4666-5888-2.ch516
  16. Tanenbaum, A. S. (2003). Moderne Betriebssysteme. Pearson Studium, Auflage 2.
  17. Tiwari, A. Turner, C.J., Majeed, B. (2008). A review of business process mining: state of the art and future trends. Business Process Management Journal. Vol. 14 Iss: 1. 5-22.
  18. Van der Aalst, WMP. (2011). Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer.
  19. Van der Aalst, WMP., Accorsi R., Ullrich M. (2012). Process Mining. Retrieved April 29, 2015, from nsicht/article/process-mining.htm
  20. Zhong, N., Liu, J.,Yao Y. (2013). Web Intelligence. Web Log Mining. Springer. 173-198.

Paper Citation

in Harvard Style

Gronau N. and Glaschke C. (2015). Automated Process Model Discovery - Limitations and Challenges . In Proceedings of the Fifth International Symposium on Business Modeling and Software Design - Volume 1: BMSD, ISBN 978-989-758-111-3, pages 19-25. DOI: 10.5220/0005885100190025

in Bibtex Style

author={Norbert Gronau and Christian Glaschke},
title={Automated Process Model Discovery - Limitations and Challenges},
booktitle={Proceedings of the Fifth International Symposium on Business Modeling and Software Design - Volume 1: BMSD,},

in EndNote Style

JO - Proceedings of the Fifth International Symposium on Business Modeling and Software Design - Volume 1: BMSD,
TI - Automated Process Model Discovery - Limitations and Challenges
SN - 978-989-758-111-3
AU - Gronau N.
AU - Glaschke C.
PY - 2015
SP - 19
EP - 25
DO - 10.5220/0005885100190025