Geometry Analysis of Superconducting Cables for the Optimization of Global Performances

Nicolas Lermé, Petr Dokládal

Abstract

Superconducting cables have now become a mature technology for energy transport, high-field magnets (MRI, LHC) and fusion applications (ToreSupra, and eventually ITER and DEMO). The superconductors are extremely brittle and suffer from electrical damages brought by mechanical strain induced by electromagnetic field that they generate. An optimal wiring architecture, obtained by simulation, can limit these damages. However, the simulation is a complex process and needs validation. This validation is performed on real 3D samples by the means of image processing. Within this objective, this paper is, to our best knowledge, the first one to present a method to segment the samples of three types of cables as well as a shape and geometry analysis. Preliminary results are encouraging and intended to be later compared to the simulation results.

References

  1. Dice, L. (1945). Measures of the amount of ecologic association between species. 26(3):297-302.
  2. Ginneken, B., Heimann, T., and Styner, M. (2007). 3D segmentation in the clinic: A grand challenge.
  3. IEC (2004). Âmes des câbles isolés. IEC Central Office Geneva Switzerland. CEI 60228:2004.
  4. Ikonen, L. (2005). Pixel queue algorithm for geodesic distance transforms. 3429:228-239.
  5. Manil, P., Mouzouri, M., and Nunio, F. (2012). Mechanical modeling of low temperature superconducting cables at the strand level. 22(3).
  6. Meyer, F. (1991). Un algorithme optimal de ligne de partage des eaux. volume 2, pages 847-859.
  7. Milanese, A., Devaux, M., Durante, M., Manil, P., Perez, J., Rifflet, J., De Rijk, G., and Rondeaux, F. (2012). Design of the EuCARD high field model dipole magnet FRESCA2. 22(3).
  8. Mittelmann, H. (2007). Recent benchmarks of optimization software.
  9. Montero, R. (2009). State of the art of compactness and circularity measures. 4(27):1305-1335.
  10. Oberli, L. (2013). Development of the Nb3Sn Rutherford cable for the EuCARD high field dipole magnet FRESCA2. 23(3).
  11. Seidel, M. and Sturge, D. (2009). Tensile surface and structure: A pratical guide to cable and membrane construction. Wiley.
  12. Sternberg, R. (1986). Grayscale morphology. 35(3):333- 355.
  13. Torre, A., Bajas, H., and Ciazynski, D. (2014). Mechanical and electrical modeling of strands in two ITER CS cable designs. 24(3).
  14. Žunic, J. (2012). Shape descriptors for image analysis. 15(23):5-38.
  15. Weiss, K., Heller, R., Fietz, W., Duchateau, J., Dolgetta, N., and Vostner, A. (2007). Systematic approach to examine the strain effect on the critical current of Nb3Sn cable-in-conduit-conductors. 17(2):1469-1472.
Download


Paper Citation


in Harvard Style

Lermé N. and Dokládal P. (2016). Geometry Analysis of Superconducting Cables for the Optimization of Global Performances . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 540-551. DOI: 10.5220/0005667105400551


in Bibtex Style

@conference{icpram16,
author={Nicolas Lermé and Petr Dokládal},
title={Geometry Analysis of Superconducting Cables for the Optimization of Global Performances},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={540-551},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005667105400551},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Geometry Analysis of Superconducting Cables for the Optimization of Global Performances
SN - 978-989-758-173-1
AU - Lermé N.
AU - Dokládal P.
PY - 2016
SP - 540
EP - 551
DO - 10.5220/0005667105400551