A Multi-context Framework for Modeling an Agent-based Recommender System

Amel Ben Othmane, Andrea Tettamanzi, Serena Villata, Nhan Le Thanh, Michel Buffa


In this paper, we propose a multi-agent recommender system based on the Belief-Desire-Intention (BDI) model applied to multi-context systems. First, we extend the BDI model with additional contexts to deal with sociality and information uncertainty. Second, we propose an ontological representation of planning and intention contexts in order to reason about plans and intentions. Moreover, we show a simple real-world scenario in healthcare in order to illustrate the overall reasoning process of our model.


  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6):734-749.
  2. Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems. In Recommender systems handbook, pages 217-253. Springer.
  3. Amir, O., Grosz, B. J., Law, E., and Stern, R. (2013). Collaborative health care plan support. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pages 793-796. International Foundation for Autonomous Agents and Multiagent Systems.
  4. Batet, M., Moreno, A., Sánchez, D., Isern, D., and Valls, A. (2012). Turist@: Agent-based personalised recommendation of tourist activities. Expert Systems with Applications, 39(8):7319-7329.
  5. Besold, T. R. and Mandl, S. (2010). Towards an implementation of a multi-context system framework. MRC 2010, page 13.
  6. Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recommender systems survey. KnowledgeBased Systems, 46:109-132.
  7. Bridge, D., Göker, M. H., McGinty, L., and Smyth, B. (2005). Case-based recommender systems. The Knowledge Engineering Review, 20(03):315-320.
  8. Casali, A., Godo, L., and Sierra, C. (2008). A tourism recommender agent: from theory to practice. Inteligencia artificial: Revista Iberoamericana de Inteligencia Artificial , 12(40):23-38.
  9. Casali, A., Godo, L., and Sierra, C. (2011). A graded bdi agent model to represent and reason about preferences. Artificial Intelligence , 175(7):1468-1478.
  10. Chen, B. and Cheng, H. H. (2010). A review of the applications of agent technology in traffic and transportation systems. Intelligent Transportation Systems, IEEE Transactions on, 11(2):485-497.
  11. Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment. Artificial intelligence , 42(2):213- 261.
  12. Costabello, L., Villata, S., and Gandon, F. (2012). Contextaware access control for rdf graph stores. In ECAI, pages 282-287.
  13. da Costa Pereira, C. and Tettamanzi, A. G. (2010). An integrated possibilistic framework for goal generation in cognitive agents. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 1239-1246.
  14. da Costa Pereira, C. and Tettamanzi, A. G. (2014). Syntactic possibilistic goal generation. In ECAI 2014-21st European Conference on Artificial Intelligence , volume 263, pages 711-716. IOS Press.
  15. Dubois, D. and Prade, H. (2006). Possibility theory and its applications: a retrospective and prospective view. Springer.
  16. Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M. (2015). Constraint-based recommender systems. In Recommender Systems Handbook, pages 161-190. Springer.
  17. Gavalas, D. and Kenteris, M. (2011). A web-based pervasive recommendation system for mobile tourist guides. Personal and Ubiquitous Computing, 15(7):759-770.
  18. Gavalas, D., Konstantopoulos, C., Mastakas, K., and Pantziou, G. (2014). Mobile recommender systems in tourism. Journal of Network and Computer Applications, 39:319-333.
  19. Gruber, T. (2009). Ontology. Encyclopedia of database systems, pages 1963-1965.
  20. Jennings, N. R. (2000). On agent-based software engineering. Artificial intelligence , 117(2):277-296.
  21. Koster, A., Schorlemmer, M., and Sabater-Mir, J. (2012). Opening the black box of trust: reasoning about trust models in a bdi agent. Journal of Logic and Computation, page exs003.
  22. Mazzotta, I., de Rosis, F., and Carofiglio, V. (2007). Portia: A user-adapted persuasion system in the healthyeating domain. Intelligent Systems, IEEE, 22(6):42- 51.
  23. Negoita, C., Zadeh, L., and Zimmermann, H. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1:3-28.
  24. Paglieri, F., Castelfranchi, C., da Costa Pereira, C., Falcone, R., Tettamanzi, A., and Villata, S. (2014). Trusting the messenger because of the message: feedback dynamics from information quality to source evaluation. Computational and Mathematical Organization Theory, 20(2):176-194.
  25. Parsons, S., Jennings, N. R., Sabater, J., and Sierra, C. (2002). Agent specification using multi-context systems. In Foundations and Applications of Multi-Agent Systems, pages 205-226. Springer.
  26. Pinyol, I., Sabater-Mir, J., Dellunde, P., and Paolucci, M. (2012). Reputation-based decisions for logic-based cognitive agents. Autonomous Agents and MultiAgent Systems, 24(1):175-216.
  27. Rao, A. S., Georgeff, M. P., et al. (1995). Bdi agents: From theory to practice. In ICMAS, volume 95, pages 312- 319.
  28. Sakellariou, I., Kefalas, P., and Stamatopoulou, I. (2008). Enhancing netlogo to simulate bdi communicating agents. In Artificial Intelligence: Theories, Models and Applications, pages 263-275. Springer.
  29. Singh, M. P. (1998). Semantical considerations on intention dynamics for bdi agents. Journal of Experimental & Theoretical Artificial Intelligence , 10(4):551-564.
  30. Trewin, S. (2000). Knowledge-based recommender systems. Encyclopedia of Library and Information Science: Volume 69-Supplement 32, page 180.
  31. Wooldridge, M., Jennings, N. R., and Kinny, D. (2000). The gaia methodology for agent-oriented analysis and design. Autonomous Agents and multi-agent systems, 3(3):285-312.

Paper Citation

in Harvard Style

Ben Othmane A., Tettamanzi A., Villata S., Le Thanh N. and Buffa M. (2016). A Multi-context Framework for Modeling an Agent-based Recommender System . In Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-172-4, pages 31-41. DOI: 10.5220/0005686500310041

in Bibtex Style

author={Amel Ben Othmane and Andrea Tettamanzi and Serena Villata and Nhan Le Thanh and Michel Buffa},
title={A Multi-context Framework for Modeling an Agent-based Recommender System},
booktitle={Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},

in EndNote Style

JO - Proceedings of the 8th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - A Multi-context Framework for Modeling an Agent-based Recommender System
SN - 978-989-758-172-4
AU - Ben Othmane A.
AU - Tettamanzi A.
AU - Villata S.
AU - Le Thanh N.
AU - Buffa M.
PY - 2016
SP - 31
EP - 41
DO - 10.5220/0005686500310041