Remote Heart Rate Determination in RGB Data - An Investigation using Independent Component Analysis and Adaptive Filtering

Christian Wiede, Julia Richter, André Apitzsch, Fajer KhairAldin, Gangolf Hirtz

Abstract

An emerging topic in the field of elderly care is the determination and tracking of vital parameters, such as the heart rate. This parameter provides important information about a person’s current health status. Within the last years, various research focussed on this topic. The recognition of vital parameters is increasingly relevant for our ageing society. This paper presents a method to remotely determine the human heart rate with a camera. At this point, we suggest to use independent component analysis (ICA) and adaptive filtering for a robust detection. In our processing chain, we used different image processing techniques, e. g. face detection, and signal processing techniques, e. g. FFT and bandpass filtering, in this study. An evaluation with several probands, illuminations, frame rates and different heart rate levels showed that we could achieve a mean error of 4.36 BPM, which corresponds to CAND of 94.45 %, and a speed of 35 fps.

References

  1. Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3):R1-R39.
  2. Balakrishnan, G., Durand, F., and Guttag, J. (2013). Detecting pulse from head motions in video. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3430-3437.
  3. de Haan, G. and Jeanne, V. (2013). Robust pulse rate from chrominance-based rppg. Biomedical Engineering, IEEE Transactions on, 60(10):2878-2886.
  4. Garbey, M., Sun, N., Merla, A., and Pavlidis, I. (2007). Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. Biomedical Engineering, IEEE Transactions on, 54(8):1418-1426.
  5. He, X., Goubran, R., and Liu, X. (2014). Using eulerian video magnification framework to measure pulse transit time. In Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, pages 1-4.
  6. Hertzman, A. B. and Spealman, C. R. (1937). Observations on the finger volume pulse recorded photoelectrically. American Journal of Physiology, 119:334-335.
  7. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 10(3):626-634.
  8. K. Humphreys, C. M. and Ward, T. (2005). A cmos camerabased system for clinical photoplethysmographic applications. In Proceedings of SPIE, volume 5823, pages 88-95.
  9. Lewandowska, M., Ruminski, J., Kocejko, T., and Nowak, J. (2011). Measuring pulse rate with a webcam - a non-contact method for evaluating cardiac activity. In Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on, pages 405-410.
  10. Li, X., Chen, J., Zhao, G., and Pietikainen, M. (2014). Remote heart rate measurement from face videos under realistic situations. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 4264-4271.
  11. Meinel, L., Richter, J., Schmidt, R., Findeisen, M., and Hirtz, G. (2015). Opdemiva: An integrated assistance and information system for elderly with dementia. In Consumer Electronics (ICCE), 2015 IEEE International Conference on, pages 76-77.
  12. Poh, M.-Z., McDuff, D., and Picard, R. (2010). Noncontact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 18(10):10762-10774.
  13. Poh, M.-Z., McDuff, D., and Picard, R. (2011). Advancements in noncontact, multiparameter physiological measurements using a webcam. Biomedical Engineering, IEEE Transactions on, 58(1):7-11.
  14. Rubinstein, M. (2014). Analysis and Visualization of Temporal Variations in Video. PhD thesis, Massachusetts Institute of Technology.
  15. van Gastel, M., Stuijk, S., and de Haan, G. (2015). Motion robust remote-ppg in infrared. Biomedical Engineering, IEEE Transactions on, PP(99):1-1.
  16. van Gastel, M., Zinger, S., Kemps, H., and de With, P. (2014). e-health video system for performance analysis in heart revalidation cycling. In Consumer Electronics Berlin (ICCE-Berlin), 2014 IEEE Fourth International Conference on, pages 31-35.
  17. Verkruysse, W., Svaasand, L. O., and Nelson, J. S. (2008). Observations on the finger volume pulse recorded photoelectrically. Optics Express, 16(26):21434- 21445.
  18. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2):137-154.
  19. Wang, W., Stuijk, S., and de Haan, G. (2015). Exploiting spatial redundancy of image sensor for motion robust rppg. Biomedical Engineering, IEEE Transactions on, 62(2):415-425.
  20. Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., and Freeman, W. T. (2012). Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. (Proceedings SIGGRAPH 2012), 31(4).
Download


Paper Citation


in Harvard Style

Wiede C., Richter J., Apitzsch A., KhairAldin F. and Hirtz G. (2016). Remote Heart Rate Determination in RGB Data - An Investigation using Independent Component Analysis and Adaptive Filtering . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 240-246. DOI: 10.5220/0005694002400246


in Bibtex Style

@conference{icpram16,
author={Christian Wiede and Julia Richter and André Apitzsch and Fajer KhairAldin and Gangolf Hirtz},
title={Remote Heart Rate Determination in RGB Data - An Investigation using Independent Component Analysis and Adaptive Filtering},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={240-246},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005694002400246},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Remote Heart Rate Determination in RGB Data - An Investigation using Independent Component Analysis and Adaptive Filtering
SN - 978-989-758-173-1
AU - Wiede C.
AU - Richter J.
AU - Apitzsch A.
AU - KhairAldin F.
AU - Hirtz G.
PY - 2016
SP - 240
EP - 246
DO - 10.5220/0005694002400246