Data Based Color Constancy

Wei Xu, Huaxin Xiao, Yu Liu, Maojun Zhang

Abstract

Color constancy is an important task in computer vision. By analyzing the image formation model, color gamut data under one light source can be mapped to a hyperplane whose normal vector is only determined by its light source. Thus, the canonical light source is represented through the kernel method, which trains the color data. When an image is captured under an unknown illuminant, the image-corrected matrix is obtained through optimization. After being mapped to the high-dimensional space, the corrected color data are best fit for the hyperplane of the canonical illuminant. The proposed unsupervised feature-mining kernel method only depends on the color data without any other information. The experiments on the standard test datasets show that the proposed method achieves comparable performance with other state-of-the-art methods.

References

  1. Barnard, K. (1999). Dr. Thesis, Practical Color Constancy. Simon Fraser University, Vancouver.
  2. Bousetouane, F., Dib, L., and Snoussi, H. (2013). Improved mean shift integrating texture and color features for robust real time object tracking. The Visual Computer, 29(3):155-170.
  3. Brainard, D. H. and Freeman, W. T. (1997). Bayesian color constancy. Journal of the Optical Society of American A: Optics and Image Science, and Vision, 14(7):1393- 1411.
  4. Buchsbaum, G. (1980). A spatial processor model for object color perception. Journal of the Franklin Institute, 310(1):337-350.
  5. Cardei, V., Funt, B., and Barnard, K. (2002). Estimating the scene illumination chromaticity using a neural network. Journal of the Optical Society of American A: Optics and Image Science, and Vision, 19(12):2374- 2386.
  6. Chakrabarti, A., Hirakawa, K., and Zickler, T. (2008). Color constancy beyond bags of pixels. In Computer Vision and Pattern Recognition. IEEE.
  7. Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Color constancy with spatio-spectral statistics. Pattern Analysis and Machine Intelligence, IEEE Transaction on, 34(8):1509-1519.
  8. Ciurea, F. and Funt, B. (2003). A large images database for color constancy research. In 11th Color Imaging Conference, pages 160-164.
  9. F.-H. Cheng, W.-H. H. and Chen, T.-W. (1998). Recovering colors in an image with chromatic illuminant. Image Processing, IEEE Transactions on, 7(11):1524-1533.
  10. Finlayson, G., Drew, M., and Funt, B. (1993). Diagonal transforms suffice for color constancy. In Int. Conf. Computer Vision. IEEE.
  11. Finlayson, G. and Trezzi, E. (2004). Shades of grey and color constancy. In 12th Color Imaging Conference, pages :37-41.
  12. Finlayson, G. D., Hordley, S. D., and Hubel, P. M. (2001). Color by correlation: A simple, unifying framework for color constancy. Pattern Analysis and Machine Intelligence, IEEE Transaction on, 23(11):1209-1221.
  13. Forsyth, D. A. (1990). A novel algorithm for color constancy. Int. J. Computer Vision, 5:5-36.
  14. Funt, B. and Xiong, W. (2004). Estimating illumination chromaticity via support vector regression. In 12th Color and Imaging Conference final program and Proceedings, pages 47-52.
  15. Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T. (2008). Bayesian color constancy revisited. In Computer Vision and Pattern Recognition. IEEE.
  16. Gijsenij, A., Gevers, T., and Weijer, V. D. (2010). Generalized gamut mapping using image derivative structures for color constancy. Int. J. Computer Vision, 86(2- 3):127-139.
  17. Lai, S., Tan, X., Liu, Y., Wang, B., and Zhang, M. (2013). Fast and robust color constancy algorithm based on grey block-differencing hypothesis. Optical review, 20(4):341-347.
  18. Land, E. (1977). The retinex theory of color vision. Scientific American, 237(6):108-128.
  19. Pan, S. and Chen, J.-S. (2009). A damped gauss-newton method for the second-order cone complementarity problem. Applied Mathematics and Optimization, 59.
  20. Rosenberg, C., Minka, T., and Ladsariya, A. (2004). Bayesian color constancy with non-gaussian models. In In Advances in Neural Information Processing Systems (NIPS). Cambridge MA, MIT Press.
  21. Stottinger, J., Hanbury, A., Sebe, N., and Gevers, T. (2012). Sparse color interest points for image retrieval and object categorization. Image Processing, IEEE Transactions on, 21(5):2681-2692.
  22. Subramanian, P. K. (1993). Gauss-newton methods for the complementarity problem. J. Optimization theory and applications, 77(3).
  23. van de Weijer, J., Gevers, T., and Gijsenij, A. (2007). Edge based color constancy. Image Processing, IEEE Transactions on, 16(9):2207-2214.
  24. Zhuang, H., Low, K., and Yau, W. (2012). Multichannel pulse-coupled-neural-network-based color image segmentation for object detection. Industrial electronics, IEEE Transactons on, 59(8):3299-3308.
Download


Paper Citation


in Harvard Style

Xu W., Xiao H., Liu Y. and Zhang M. (2016). Data Based Color Constancy . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 431-436. DOI: 10.5220/0005698104310436


in Bibtex Style

@conference{icpram16,
author={Wei Xu and Huaxin Xiao and Yu Liu and Maojun Zhang},
title={Data Based Color Constancy},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={431-436},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005698104310436},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Data Based Color Constancy
SN - 978-989-758-173-1
AU - Xu W.
AU - Xiao H.
AU - Liu Y.
AU - Zhang M.
PY - 2016
SP - 431
EP - 436
DO - 10.5220/0005698104310436