Forecast-augmented Route Guidance in Urban Traffic Networks based on Infrastructure Observations

Matthias Sommer, Sven Tomforde, Jörg Hähner

Abstract

Increasing mobility and raising traffic demands lead to serious congestion problems. Intelligent traffic management systems try to alleviate this problem with optimised signalisation of traffic lights and dynamic route guidance (DRG). One solution for the former aspect is Organic Traffic Control (OTC), offering a self-organised, decentralised traffic control system. Based on OTC, this paper presents two proactive routing protocols, resembling techniques known from the Internet domain, applied to the traffic routing problem: Distance Vector Routing and Link State Routing. These protocols were adapted to utilise forecasts of traffic flows to offer anticipatory and time-dependant DRG for road users. The efficiency of these protocols is demonstrated with simulations of two Manhattan-type road networks under disturbed and undisturbed conditions. The results indicate their benefit in terms of lower travel times and emissions, even under low compliance rates.

References

  1. Barcelo, J. and Casas, J. (2002). Dynamic network simulation with AIMSUN. In Proc. of the Int. Symp. on Transp. Simul., pages 1-25. Kluwer.
  2. Claes, R., Holvoet, T., and Weyns, D. (2011). A decentralized approach for anticipatory vehicle routing using delegate multiagent systems. IEEE Trans. on Int. Transp. Systems, 12:364-373.
  3. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269- 271.
  4. Dong, J., Mahmassani, H., and Lu, C.-C. (2006). How reliable is this route: Predictive travel time and reliability for anticipatory traveler information systems. Journal of the Transp. Research Board, (1980):117-125.
  5. Dong, W. (2011). An overview of in-vehicle route guidance system. 34th Australasian Transp. Research Forum (ATRF 2011), Adelaide, Australia, 28-30 Sept. 2011.
  6. Emmerink, R. H. M., Nijkamp, P., and Rietveld, P. (1996). Variable message signs and radio traffic information, an integrated empirical analysis of drivers route choice behaviour. In Transp. Research Part A: Policy and Practice, volume 30, pages 135-153.
  7. Erke, A., Sagberg, F., and Hagman, R. (2007). Effects of route guidance variable message signs (vms) on driver behaviour. Transp. Research Part F: Traffic Psychology and Behaviour, 10(6):447 - 457.
  8. F.S. Zuurbier, J. v. L. and van Zuylen, H. (2006). Comparison study of decentralized feedback strategies for route guidance purposes. In Proc. of the 9th TRAIL Congress, pages 1-15.
  9. Fu, L. (2001). An adaptive routing algorithm for in-vehicle route guidance systems with real-time information. Transp. Research Part B, 35(8):749-765.
  10. Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics, 4(2):100-107.
  11. Horst F. Wedde et al. (2007). Highly Dynamic and Adaptive Traffic Congestion Avoidance in Real-Time Inspired by Honey Bee Behavior. In Mobilität und Echtzeit - Fachtagung der GI-Fachgruppe Echtzeitsysteme, pages 21-31. Springer.
  12. Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, pages 679-688.
  13. Kaplan, E. (2005). Understanding GPS - Principles and applications. Artech House, 2nd edition edition.
  14. Nannicini, G., Delling, D., Schultes, D., and Liberti, L. (2012). Bidirectional a* search on time-dependent road networks. Netw., 59(2):240-251.
  15. Panis, L. I., Broekx, S., and Liu, R. (2006). Modelling instantaneous traffic emission and the influence of traffic speed limits. Science of The Total Environment, 371(13):270 - 285.
  16. Parkany, E. and Xie, P. C. (2005). A complete review of incident detection algorithms & their deployment: What works and what doesn't. Technical report, Fall River, MA: New England Transp. Consortium.
  17. Prothmann, H., Tomforde, S., Branke, J., Hähner, J., M üller-Schloer, C., and Schmeck, H. (2011). Organic Traffic Control. In Organic Computing - A Paradigm Shift for Complex Systems, chapter 5.1, pages 431- 446. Birkhäuser.
  18. Prothmann, H., Tomforde, S., Lyda, J., Branke, J., Hähner, J., M üller-Schloer, C., and Schmeck, H. (2012). Selforganised routing for road networks. In Proc. of the 6. Int. Workshop on Self-Organizing Systems, LNCS 7166, pages 48-59. Springer.
  19. Schmitt, E. J. and Jula, H. (2006). Vehicle route guidance systems: classification and comparison. 2006 IEEE Intelligent Transp. Systems Conference, 1:242-247.
  20. Sommer, M., Tomforde, S., Hähner, J., and Auer, D. (2015). Learning a dynamic re-combination strategy of forecast techniques at runtime. In Proc. of IEEE Int. Conf. on Autonomic Computing (ICAC), pages 261-266.
  21. Tanenbaum, A. S. (2002). Computer Networks. Pearson, 4th edition.
  22. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., M üller-Schloer, C., and Schmeck, H. (2010). Possibilities and limitations of decentralised traffic control systems. In IEEE World Congress on Comp. Int., pages 3298-3306. IEEE.
  23. Webster, F. V. (1958). Traffic signal settings . Road Research Technical Paper No. 39, Road Research Laboratory, England, HMSO.
  24. Wunderlich, K. E., Kaufman, D. E., and Smith, R. L. (2000). Link travel time prediction for decentralized route guidance architectures. IEEE Transactions on Intelligent Transp. Systems, 1(1):4-14.
Download


Paper Citation


in Harvard Style

Sommer M., Tomforde S. and Hähner J. (2016). Forecast-augmented Route Guidance in Urban Traffic Networks based on Infrastructure Observations . In Proceedings of the International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, ISBN 978-989-758-185-4, pages 177-186. DOI: 10.5220/0005741901770186


in Bibtex Style

@conference{vehits16,
author={Matthias Sommer and Sven Tomforde and Jörg Hähner},
title={Forecast-augmented Route Guidance in Urban Traffic Networks based on Infrastructure Observations},
booktitle={Proceedings of the International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},
year={2016},
pages={177-186},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005741901770186},
isbn={978-989-758-185-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,
TI - Forecast-augmented Route Guidance in Urban Traffic Networks based on Infrastructure Observations
SN - 978-989-758-185-4
AU - Sommer M.
AU - Tomforde S.
AU - Hähner J.
PY - 2016
SP - 177
EP - 186
DO - 10.5220/0005741901770186