Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data

Sebastian Vlaic, Robert Altwasser, Peter Kupfer, Carol L. Nilsson, Mark Emmett, Anke Meyer-Baese, Reinhard Guthke


In the field of transcriptomics data the automated inference of predictive gene regulatory networks from high-throughput data is a common approach for the identification of novel genes with potential therapeutic value. Sophisticated methods have been developed that extensively make use of diverse sources of prior-knowledge to obtain biologically relevant hypotheses. Transferring such concepts to the field of phosphoproteomics data has the potential to reveal new insights into phosphorylation-related signaling mechanisms. In this study we conceptually adapt the TILAR network inference algorithm for the inference of a phospho-regulatory network. Therefore, we use published phosphoproteomics data of WP1193 treated and IL6-stimulated glioblastoma stem cells under normoxic and hypoxic condition. Peptides corresponding to 21 differentially phosphorylated proteins were used for network inference. Topological analysis of the phospho-regulatory network suggests lamin B2 (LMNB2) and spectrin, beta, non-erythrocytic 1 (SPTBN1) as potential hub-proteins associated with the alteration of phosphorylation under the observed conditions. Altogether, our results show that inference of phospho-regulatory networks can aid in the understanding of complex molecular mechanisms and cellular processes of biological systems.


  1. Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L., and Goldman, R. D. (2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev, 22(7):832-853.
  2. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals of statistics, 32(2):407-499.
  3. Hecker, M., Goertsches, R. H., Engelmann, R., Thiesen, H.- J., and Guthke, R. (2009a). Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinformatics, 10:262.
  4. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R. (2009b). Gene regulatory network inference: data integration in dynamic models-a review. Biosystems, 96(1):86-103.
  5. Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., and Sullivan, M. (2012). Phosphositeplus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res, 40(Database issue):D261-D270.
  6. Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc, 4(1):44-57.
  7. Jørgensen, C. and Linding, R. (2008). Directional and quantitative phosphorylation networks. Brief Funct Genomic Proteomic, 7(1):17-26.
  8. Linding, R., Jensen, L. J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M. B., and Pawson, T. (2008). Networkin: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res, 36(Database issue):D695-D699.
  9. Mallows, C. L. (1973). Some comments on c p. Technometrics, 15(4):661-675.
  10. Manno, S., Takakuwa, Y., Nagao, K., and Mohandas, N. (1995). Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem, 270(10):5659- 5665.
  11. Nikitin, A., Egorov, S., Daraselia, N., and Mazo, I. (2003). Pathway studiothe analysis and navigation of molecular networks. Bioinformatics, 19(16):2155-2157.
  12. Nilsson, C. L., Dillon, R., Devakumar, A., Shi, S. D.-H., Greig, M., Rogers, J. C., Krastins, B., Rosenblatt, M., Kilmer, G., Major, M., Kaboord, B. J., Sarracino, D., Rezai, T., Prakash, A., Lopez, M., Ji, Y., Priebe, W., Lang, F. F., Colman, H., and Conrad, C. A. (2010). Quantitative phosphoproteomic analysis of the stat3/il-6/hif1alpha signaling network: an initial study in gsc11 glioblastoma stem cells. J Proteome Res, 9(1):430-443.
  13. Pai, C. Y., Chen, H. K., Sheu, H. L., and Yeh, N. H. (1995). Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. J Cell Sci, 108 ( Pt 5):1911-1920.
  14. R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  15. Rombouts, K., Mello, T., Liotta, F., Galli, A., Caligiuri, A., Annunziato, F., and Pinzani, M. (2012). Marcks actin-binding capacity mediates actin filament assembly during mitosis in human hepatic stellate cells. Am J Physiol Cell Physiol, 303(4):C357-C367.
  16. Sahlgren, C. M., Mikhailov, A., Hellman, J., Chou, Y. H., Lendahl, U., Goldman, R. D., and Eriksson, J. E. (2001). Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem, 276(19):16456-16463.
  17. Seet, B. T., Dikic, I., Zhou, M.-M., and Pawson, T. (2006). Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol, 7(7):473-483.
  18. Smith, N. L. and Miskimins, W. K. (2011). Phosphorylation at serine 482 affects stability of nf90 and its functional role in mitosis. Cell Prolif, 44(2):147-155.
  19. Solow, S., Salunek, M., Ryan, R., and Lieberman, P. M. (2001). Taf(ii) 250 phosphorylates human transcription factor iia on serine residues important for tbp binding and transcription activity. J Biol Chem, 276(19):15886-15892.
  20. Sparks, C. A., Fey, E. G., Vidair, C. A., and Doxsey, S. J. (1995). Phosphorylation of numa occurs during nuclear breakdown and not mitotic spindle assembly. J Cell Sci, 108 ( Pt 11):3389-3396.
  21. Spiliotis, E. T., Kinoshita, M., and Nelson, W. J. (2005). A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science, 307(5716):1781-1785.
  22. Terfve, C. and Saez-Rodriguez, J. (2012). Modeling signaling networks using high-throughput phosphoproteomics. Adv Exp Med Biol, 736:19-57.
  23. Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., and Yao, X. (2008). Gps 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics, 7(9):1598-1608.
  24. Yang, X.-J. (2005). Multisite protein modification and intramolecular signaling. Oncogene, 24(10):1653- 1662.

Paper Citation

in Harvard Style

Vlaic S., Altwasser R., Kupfer P., Nilsson C., Emmett M., Meyer-Baese A. and Guthke R. (2016). Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data . In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016) ISBN 978-989-758-170-0, pages 85-91. DOI: 10.5220/0005743000850091

in Bibtex Style

author={Sebastian Vlaic and Robert Altwasser and Peter Kupfer and Carol L. Nilsson and Mark Emmett and Anke Meyer-Baese and Reinhard Guthke},
title={Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data},
booktitle={Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016)},

in EndNote Style

JO - Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (BIOSTEC 2016)
TI - Inference of Predictive Phospho-regulatory Networks from LC-MS/MS Phosphoproteomics Data
SN - 978-989-758-170-0
AU - Vlaic S.
AU - Altwasser R.
AU - Kupfer P.
AU - Nilsson C.
AU - Emmett M.
AU - Meyer-Baese A.
AU - Guthke R.
PY - 2016
SP - 85
EP - 91
DO - 10.5220/0005743000850091