AMBIT-SE: Towards a User-aware Semantic Enterprise Search Engine

Giacomo Cabri, Stefano Gaddi, Riccardo Martoglia


Search engines represent one of the most exploited tools both in our everyday life and in our work. In this paper we propose a user-aware semantic enterprise search engine called AMBIT-SE. It is "enterprise" in the sense that it is focused on the search in enterprise websites; the "semantic" aspect is related to the fact that it exploits not an exact word match, but relies also on the meaning of the words by means of synonyms and related terms; finally, to produce query results it takes into account also the user information, which turns out to be very useful to improve the search. We explain how our system works and report the results of experiments on different websites.


  1. Abdou, S. and Savoy, J. (2008). Searching in medline: Query expansion and manual indexing evaluation. Inf. Process. Manage., 44(2):781-789.
  2. Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
  3. Beneventano, D., Bergamaschi, S., and Martoglia, R. (2015). Exploiting semantics for searching agricultural bibliographic data. Journal of Information Science.
  4. Bergamaschi, S., Martoglia, R., and Sorrentino, S. (2015). Exploiting semantics for filtering and searching knowledge in a software development context. Knowledge and Information Systems, 45(2):295-318.
  5. Bernardi, R. (2011). Digital libraries: Ranked evaluation.
  6. Bolchini, C., Orsi, G., Quintarelli, E., Schreiber, F. A., and Tanca, L. (2011). Context modeling and context awareness: steps forward in the context-addict project. Bulletin of the Technical Committee on Data Engineering, 34:47-54.
  7. Cabri, G., Leonardi, L., Mamei, M., and Zambonelli, F. (2003). Location-dependent Services for Mobile Users. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems And Humans, 33(6):667-681.
  8. Carpineto, C. and Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Comput. Surv., 44(1):1:1-1:50.
  9. Haslhofer, B., Martins, F., and Magalha╦ťes, J. a. (2013). Using skos vocabularies for improving web search. In Proceedings of the 22Nd International Conference on World Wide Web, WWW 7813 Companion, pages 1253-1258.
  10. Heflin, J. and Hendler, J. (2000). Searching the web with shoe. In Artificial Intelligence for Web Search. Papers from the AAAI Workshop.
  11. Hyvonen, E., Saarela, S., and Viljanen, K. (2003). Ontogator: combining view- and ontology-based search with semantic browsing. In Proceedings of XML Finland.
  12. Leacock, C. and Chodorow, M. (1998). Combining local context and wordnet similarity for word sense identification. InWordNet: An electronic lexical database.
  13. Liu, F., Yu, C., and Meng, W. (2004). Personalized web search for improving retrieval effectiveness. IEEE Trans. on Knowl. and Data Eng., 16(1):28-40.
  14. Mangold, C. (2007). A survey and classification of semantic search approaches. In Semantics and Ontology.
  15. Martoglia, R. (2011). Facilitate IT-Providing SMEs in Software Development: a Semantic Helper for Filtering and Searching Knowledge. In SEKE, pages 130-136.
  16. Martoglia, R. (2015). Ambit: Semantic engine foundations for knowledge management in context-dependent applications. In SEKE, pages 146-151.
  17. Thesprasith, O. and Jaruskulchai, C. (2014). Query expansion using medical subject headings terms in the biomedical documents. In Intelligent Information and Database Systems - 6th Asian Conference, ACIIDS 2014, Bangkok, Thailand, April 7-9, 2014, Proceedings, Part I, pages 93-102.
  18. Villegas, N. M. and Mller, H. A. (2010). Managing dynamic context to optimize smart interactions and services. In Chignell, M., Cordy, J., Ng, J., and Yesha, Y., editors, The Smart Internet, volume 6400 of Lecture Notes in Computer Science, pages 289-318. Springer Berlin Heidelberg.
  19. Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., and Li, H. (2010). Context-aware ranking in web search. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 7810, pages 451-458.

Paper Citation

in Harvard Style

Cabri G., Gaddi S. and Martoglia R. (2016). AMBIT-SE: Towards a User-aware Semantic Enterprise Search Engine . In Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-186-1, pages 98-108. DOI: 10.5220/0005788800980108

in Bibtex Style

author={Giacomo Cabri and Stefano Gaddi and Riccardo Martoglia},
title={AMBIT-SE: Towards a User-aware Semantic Enterprise Search Engine},
booktitle={Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},

in EndNote Style

JO - Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - AMBIT-SE: Towards a User-aware Semantic Enterprise Search Engine
SN - 978-989-758-186-1
AU - Cabri G.
AU - Gaddi S.
AU - Martoglia R.
PY - 2016
SP - 98
EP - 108
DO - 10.5220/0005788800980108