Does Transmission Technology Influence Acceptance of Overhead Power Lines? An Empirical Study

Barbara S. Zaunbrecher, Marco Stieneker, Rik W. De Doncker, Martina Ziefle

2016

Abstract

For the transmission of electricity across long distances, high voltage direct current (DC) transmission is discussed in Germany as an alternative to the currently used alternating current (AC) as it is more efficient for these distances. Changes in energy infrastructure are known to raise public awareness. However, little is known whether differences in transmission technology are relevant for the public and if so, to what extent. Two consecutive empirical studies were run in which acceptance towards transmission lines operated with DC in contrast to AC was explored. AC and DC power lines were not evaluated differently, yielding overall quite neutral ratings (Study 1) which might be due to a low information level in the public. A closer look (Study 2) showed that giving information on technical and design parameters of the transmission lines used for either AC or DC technology also did not change attitudes substantially. It is therefore concluded that transmission technology alone did not influence acceptance of power lines for the investigated sample. In addition, a need for more information on DC for high voltage transmission was identified. Further research is required on the influence of different power line layout of AC and DC on acceptance.

References

  1. Aas, Ø., Devine-Wright, P., Tangeland, T., Batel, S., & Ruud, A. (2014). Public beliefs about high-voltage powerlines in Norway, Sweden and the United Kingdom: A comparative survey. Energy Research & Social Science, 2, 30-37.
  2. ABB review Special Report: 60 years of HVDC. (2014). ABB. Retrieved from https://library.e.abb.com/public /aff841e25d8986b5c1257d380045703f/140818%20AB B%20SR%2060%20years%20of%20HVDC_72dpi.pdf Apt, J., & Fischhoff, B. (2006). Power and People. The Electricity Journal, 19(9), 17-25.
  3. Arning, K., Kowalewski, S., & Ziefle, M. (2014). Health Concerns Versus Mobile Data Needs: Conjoint Measurement of Preferences for Mobile Communication Network Scenarios. Human and Ecological Risk Assessment: An International Journal, 20(5), 1359-1384.
  4. Arning, K., & Ziefle, M. (2015). “Get that Camera Out of My House!” Conjoint Measurement of Preferences for Video-Based Healthcare Monitoring Systems in Private and Public Places. In A. Geissbühler, J. Demongeot, M. Mokhtari, B. Abdulrazak, & H. Aloulou (Eds.), Inclusive Smart Cities and e-Health (pp. 152-164). Springer International Publishing. Retrieved from http://link.springer.com/chapter/10. 1007/978-3-319-19312-0_13.
  5. Atkinson, G., Day, B., Mourato, S., & Palmer, C. (2004). “Amenity” or “eyesore”? Negative willingness to pay for options to replace electricity transmission towers. Applied Economics Letters, 11(4), 203-208.
  6. Atkinson, G., Day, B. & Mourato, S. (2006). Underground or overground?: measuring the visual disamenity from overhead electricity transmission lines. In: Pearce, David, (ed.) Environmental Valuation in Developed Countries: Case Studies. Edward Elgar Publishing Ltd, pp. 213-239. ISBN 1840641479.
  7. Bahrman, M. P., & Johnson, B. K. (2007). The ABCs of HVDC transmission technologies. IEEE Power and Energy Magazine, 5(2), 32-44.
  8. Ciupuliga, A. R., & Cuppen, E. (2013). The role of dialogue in fostering acceptance of transmission lines: the case of a France-Spain interconnection project. Energy Policy, 60, 224-233.
  9. Timmermans, D. R. M. (2012). Media coverage on electromagnetic fields and health: Content analysis of Dutch newspaper articles and websites. Health, Risk & Society, 14(7-8), 681-696.
  10. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2 edition). Hillsdale, N.J: Routledge.
  11. Cohen, J. J., Reichl, J., & Schmidthaler, M. (2014). Refocussing research efforts on the public acceptance of energy infrastructure: A critical review. Energy, 76, 4- 9. http://doi.org/10.1016/j.energy.2013.12.056.
  12. Cotton, M., & Devine-Wright, P. (2011). Discourses of energy infrastructure development: a Q-method study of electricity transmission line siting in the UK. Environment and Planning A, 43(4), 942 - 960.
  13. Cotton, M., & Devine-Wright, P. (2013). Putting pylons into place: a UK case study of public perspectives on the impacts of high voltage overhead transmission lines. Journal of Environmental Planning and Management, 56(8), 1225-1245.
  14. De Doncker, R. W. (2014). Power electronic technologies for flexible DC distribution grids. In Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA), 2014 International (pp. 736-743). http://doi.org/10.1109/IPEC.2014.6869670.
  15. Devine-Wright, H., & Devine-Wright, P. (2009). Social representations of electricity network technologies: Exploring processes of anchoring and objectification through the use of visual research methods. British Journal of Social Psychology, 48(2), 357-373. http://doi.org/10.1348/014466608X349504.
  16. Devine-Wright, P. (2013). Explaining “NIMBY” Objections to a Power Line: The Role of Personal, Place Attachment and Project-Related Factors. Environment and Behavior, 45(6), 761-781. http://doi.org/10.1177/0013916512440435.
  17. Devine-Wright, P., & Batel, S. (2013). Explaining public preferences for high voltage pylon designs: An empirical study of perceived fit in a rural landscape. Land Use Policy, 31, 640-649.
  18. Devine-Wright, P., Devine-Wright, H., & Sherry-Brennan, F. (2010). Visible technologies, invisible organisations: An empirical study of public beliefs about electricity supply networks. Energy Policy, 38(8), 41 27-4134. http://doi.org/10.1016/j.enpol.2010.03.039.
  19. Flourentzou, N., Agelidis, V. G., & Demetriades, G. D. (2009). VSC-Based HVDC Power Transmission Systems: An Overview. IEEE Transactions on Power Electronics, 24(3), 592-602.
  20. Furby, L., Gregory, R., Slovic, P., & Fischhoff, B. (1988). Electric power transmission lines, property values, and compensation. Journal of Environmental Management, 27(1), 69-83.
  21. German Renewable Energies Act (Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG)) (2014). URL: http://www.gesetze-im-internet .de/eeg_2014/index.html.
  22. Glasdam, J., Hjerrild, J., Kocewiak, L. H., & Bak, C. L. (2012). Review on multi-level voltage source converter based HVDC technologies for grid connection of large offshore wind farms. In 2012 IEEE International Conference on Power System Technology (POWERCON) (pp. 1-6). http://doi.org/ 10.1109/PowerCon.2012.6401377.
  23. Hofmann, L. (2015, May). Einsatz von Erdkabeln und Freileitungen in Hochspannungs-Drehstrom- und - Gleichstrom-Übertragungssystemen (Power cables and overhead power lines for AC and DC transmission). Presented at the Informationstag BNetzA (Information Day Federal Network Agency), Hannover, Germany.
  24. Huijts, N. M. A., Molin, E. J. E., & Steg, L. (2012). Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renewable and Sustainable Energy Reviews, 16(1), 525-531.
  25. Jay, S. (2007). Pylons in the Back Yard: Local Planning and Perceived Risks to Health. Environment and Planning C: Government and Policy, 25(3), 423-438. http://doi.org/10.1068/c58m.
  26. Jewell, W., Grossardt, T., Bailey, K., & Gill, R. S. (2009). A New Method for Public Involvement in Electric Transmission-Line Routing. IEEE Transactions on Power Delivery, 24(4), 2240-2247. http://doi.org/ 10.1109/TPWRD.2009.2027490.
  27. Karrer, K., Glaser, C., Clemens, C., & Bruder, C. (2009). Technikaffinität erfassen-der Fragebogen TA-EG. Der Mensch Im Mittelpunkt Technischer Systeme, 8, 196- 201.
  28. Kowalewski, S., Borg, A., Kluge, J., Himmel, S., Trevisan, B., Eraßme, D., … Jakobs, E.-M. (2014). Modeling the Influence of Human Factors on the Perception of Renewable Energies. Taking Geothermics as Example. In Proceedings of the 5th International Conf. on Applied Human Factors and Ergonomics AHFE 2014 (pp. 1884-1891). Kraków, Poland: T. Ahram, W. Karwowski and T. Marek.
  29. Lienert, P., Suetterlin, B., & Siegrist, M. (2015). Public acceptance of the expansion and modification of highvoltage power lines in the context of the energy transition. Energy Policy, 87, 573-583. http://doi.org/10.1016/j.enpol.2015.09.023.
  30. Lundberg, S. (2006). Wind Farm Configuration and Energy Efficiency Studies - Series DC versus AC Layouts (Doctoral thesis). Chalmers University of Technology. Retrieved from http://publications. lib.chalmers.se/ publication/24835-wind-farm-configu ration-and-energy-efficiency-studies-series-dc- versusac-layouts.
  31. MacGregor, D. G., Slovic, P., & Morgan, M. G. (1994). Perception of risks from electromagnetic fields: a psychometric evaluation of a risk-communication approach. Risk Analysis, 14(5), 815-828.
  32. McNair, B. J., Bennett, J., Hensher, D. A., & Rose, J. M. (2011). Households' willingness to pay for overheadto-underground conversion of electricity distribution networks. Energy Policy, 39(5), 2560-2567. http://doi.org/10.1016/j.enpol.2011.02.023.
  33. Meah, K., & Ula, S. (2007). Comparative Evaluation of HVDC and HVAC Transmission Systems. In IEEE Power Engineering Society General Meeting, 2007 (pp. 1-5). http://doi.org/10.1109/PES.2007.385993.
  34. Menges, R., & Beyer, G. (2014). Underground cables versus overhead lines: Do cables increase social acceptance of grid development? Results of a Contingent Valuation survey in Germany. International Journal of Sustainable Energy Planning and Management, 3(0), 33-48.
  35. Navrud, S., Ready, R. C., Magnussen, K., & Bergland, O. (2008). Valuing the social benefits of avoiding landscape degradation from overhead power transmission lines: Do underground cables pass the benefit-cost test? Landscape Research, 33(3), 281- 296. http://doi.org/10.1080/01426390802045921.
  36. Owens, S. (2000). “Engaging the public”: information and deliberation in environmental policy. Environment and Planning A, 32(7), 1141-1148. http://doi.org/ 10.1068/a3330.
  37. Priestley, T., & Evans, G. W. (1996). Resident perceptions of a nearby electric transmission line. Journal of Environmental Psychology, 16(1), 65-74. http://doi.org/10.1006/jevp.1996.0006.
  38. Soini, K., Pouta, E., Salmiovirta, M., Uusitalo, M., & Kivinen, T. (2011). Local residents' perceptions of energy landscape: the case of transmission lines. Land Use Policy, 28(1), 294-305. http://doi.org/ 10.1016/j.landusepol.2010.06.009.
  39. Song-Manguelle, J., Maja Harfman, T., Chi, S., Gunturi, S. K., & Datta, R. (2013). Power transfer capability of HVAC cables for subsea transmission and distribution systems. In 2013 Record of Conference Papers Industry Applications Society 60th Annual IEEE Petroleum and Chemical Industry Technical Conference (PCIC) (pp. 1-9). http://doi.org/ 10.1109/PCICon.2013.6666031.
  40. Van Hertem, D., & Ghandhari, M. (2010). Multi-terminal VSC HVDC for the European supergrid: Obstacles. Renewable and Sustainable Energy Reviews, 14(9), 3156-3163. http://doi.org/10.1016/j.rser.2010.07.068.
  41. Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273-315. http://doi.org/10.1111/j.1540-5915.2008.00192.x.
  42. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27, 425-478.
  43. Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35(5), 2683-2691.
  44. Zaunbrecher, B. S., Arning, K., Özalay, B., Natemeyer, H., & Ziefle, M. (2015). Pitfalls when Placing Electricity Pylons - The Influence of Age on Acceptance. In J. Zhou & G. Salvendy (Eds.), Human Aspects of IT for the Aged Population. Design for Aging (pp. 282-293). Springer International Publishing. Retrieved from http://link.springer.com/ chapter/10.1007/978-3-319-20892-3_28.
Download


Paper Citation


in Harvard Style

Zaunbrecher B., Stieneker M., De Doncker R. and Ziefle M. (2016). Does Transmission Technology Influence Acceptance of Overhead Power Lines? An Empirical Study . In Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-184-7, pages 189-200. DOI: 10.5220/0005802801890200


in Bibtex Style

@conference{smartgreens16,
author={Barbara S. Zaunbrecher and Marco Stieneker and Rik W. De Doncker and Martina Ziefle},
title={Does Transmission Technology Influence Acceptance of Overhead Power Lines? An Empirical Study},
booktitle={Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2016},
pages={189-200},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005802801890200},
isbn={978-989-758-184-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Does Transmission Technology Influence Acceptance of Overhead Power Lines? An Empirical Study
SN - 978-989-758-184-7
AU - Zaunbrecher B.
AU - Stieneker M.
AU - De Doncker R.
AU - Ziefle M.
PY - 2016
SP - 189
EP - 200
DO - 10.5220/0005802801890200