A Framework for Enriching Job Vacancies and Job Descriptions Through Bidirectional Matching

Sisay Adugna Chala, Fazel Ansari, Madjid Fathi


There is a huge online data about job descriptions which has been entered by job seekers and job holders that can be utilized to give insight into the current state of jobs. Employers also produce large volume of vacancy data online which can be exploited to portray the current demand of the job market. When preparing job vacancies, taking into account the information contained in job descriptions, and vice versa, the likelihood of getting the bidirectional match of a job description and a vacancy will be improved. To improve the quality of job descriptions and job vacancies, a mediating system is required that connects and supports job designers and employers, respectively. In this paper, we propose a framework of an automatic bidirectional matching system that measures the degree of semantic similarity of job descriptions provided by job-seeker, job-holder or job-designer against the vacancy provided by employer or job-agent. The system provides suggestions to improve both job descriptions and vacancies using a combination of text mining methods.


  1. Aslam, J. A., Pelekhov, E., and Rus, D. (2004). The star clustering algorithm for static and dynamic information organization. Journal of Graph Algorithms and Applications, vol. 8(no. 1):95-129.
  2. Belloni, M., Brugiavini, A., Meschi, E., and Tijdens, K. G. (2014). Measurement error in occupational coding: an analysis on share data. http://papers. ssrn.com/sol3/papers.cfm?abstract id=2539080.
  3. Biemann, C. (2012). Structure Discovery in Natural Language. Springer.
  4. Charikar, M., Chekuri, C., Feder, T., and Motwani, R. (1997). Incremental clustering and dynamic information retrieval. Proceedings of the 29th Symposium on Theory of Computing.
  5. Charu, C. A. and Zhai, C. X. (2012). Mining Text Data. Springer.
  6. Chatterjee, A. and Perrizo, W. (2009). Bi-directional string matching algorithm in text mining. IADIS Information Systems Conference. http://www.cs. ndsu.nodak.edu/~perrizo/saturday/papers/sede09/ sede09 arijit1 bidir string match.pdf.
  7. Cutting, D., Karger, D., and Pedersen, J. (1993). Constant interaction-time scatter/gather browsing of very large document collections. Proceedings of the 16th SIGIR.
  8. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407.
  9. EC (2015). Esco home european commission. https:// ec.europa.eu/esco/home.
  10. Fasulo, D. (1999). An analysis of recent works on clustering algorithms.
  11. Fischer, G., Strauss, R., and Maly, R. (2014). Eu employment and social situation: Recent trends in the geographical mobility of workers in the eu.
  12. Fortunato, S. (2010). Community detection in graphs. Journal of Physics Reports 486, pages 75-174. DOI:10.1016/j.physrep.2009.11.002.
  13. Gan, G., Ma, C., and Wu, J. (2007). Data clustering: Theory, algorithms, and applications. ASA-SIAM Series on Statistics and Applied Probability).
  14. Gijswijt, D., Jost, V., and Queyranne, M. (2007). Clique partitioning of interval graphs with submodular costs on the cliques. RAIRO Operations Research, 41:275- 287. DOI:10.1051/ro:2007024.
  15. Gil-García, R. J., Bad ía-Contelles, J. M., and PonsPorrata, A. (2003). Extended star clustering algorithm. Progress in Pattern Recognition, Speech and Image Analysis, pages 480-487.
  16. Godliman (2009). How to manage headhunters for candidates. http://godlimanpartners.com/ interface/resources/How To Manage Headhunters for Candidates.
  17. Goutte, C. and Gaussier, E. (2005). A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. Advances in information retrieval, pages 345-359. http://link. springer.com/ chapter/10.1007/978-3-540-31865-1 25.
  18. Harrington, P. (2012). Machine Learning in Action. Manning Publications.
  19. Hernandez, J. H. (2015). Ways to make your resume perfect for a job opening. http://www.careerealism.com/ resume-perfect-match-job-opening/.
  20. Hotho, A. Maedche, A. and Staab, S. (2002). Text clustering based on good aggregations. Künstliche Intelligenz (KI), 16(4):48-54.
  21. Hussain, I., Hassan Kazmi, S. Z., Ali Khan, I., and Mehmood, R. (2013). Improved bidirectional exact pattern matching. Internation Journal of Scientific and Engineering Research . https:// uhdspace.uhasselt.be/dspace/handle/1942/16925.
  22. Jones, L. (2015). How to match qualifications to a job description in a resume. http://work.chron.com/matchqualifications-job-description-resume-8135.html.
  23. Jurafsky, D. and Martin, M. (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. Prentice-Hall, 2nd edition edition.
  24. Klahold, A., Uhr, P., Ansari, F., and Fathi, M. (2014). Using word association to detect multitopic structures in text documents. IEEE Intelligent Systems, 29(5):40-46.
  25. Kucherov, G., Salikhov, K., and Tsur, D. (2014). Approximate string matching using a bidirectional index. Lecture Notes in Computer Science.
  26. Landauer, T. (2007). Handbook of Latent Semantic Analysis. University of Colorado Institute of Cognitive Science Series. Lawrence Erlbaum Associates. https://books.google.de/books?id=jgVWCuFXePEC.
  27. Li, X. (1990). Parallel algorithms for hierarchical clustering and clustering validity. IEEE Transaction on Pattern Analysis and Machine Intelligence, 12:1088-1092.
  28. Ma, J., Xu, W., Sun, Y., Turban, E., Wang, S., and Liu, O. (2012). An ontology-based text-mining method to cluster proposals for research project selection. IEEE transactions on systems, man, and cybernetics-part a: systems and humans, 42(3):784-790.
  29. Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
  30. Muderedzwa, M. and Nyakwende, E. (2010). A framework for improving the effectiveness of it in employment screening. In Research and Development (SCOReD), 2010 IEEE Student Conference IEEE. http://ieeexplore.ieee.org/xpls/ abs all.jsp?arnumber=5703988.
  31. Nakov, P. (2000). Getting better results with latent semantic indexing. Computational Intelligence: Theory and Applications, pages 156-166. http:// citeseerx.ist.psu.edu/viewdoc/download?doi=
  32. Rafi, M. and Shaikh, M. S. (2013). An improved semantic similarity measure for document clustering based on topic maps. Computing Research Repository. http://arxiv.org/abs/1303.4087.
  33. Rajasekaran, S. (2005). Efficient parallel hierarchical clustering algorithms. IEEE Transactions on Parallel and Distributed Systems, vol. 16(No. 6):497-502.
  34. Sacchetti, L. (2013). The magic of headhunting: A how-to guide to hunting and closing top candidates. http://ren-network.com/wp-content/uploads/2013/ 05/The-Magic-of-Headhunting-A-How-to-Guide-toHunting-and-Closing-Top-Candidates.pdf.
  35. Schaeffer, S. E. (2007). Survey: Graph clustering. Journal of Computer Science Review, 1:27-64. Doi:10.1016/j.cosrev.2007.05.001.
  36. Tar, H. H. and S., N. T. T. (2011). Ontology-based concept weighting for text documents. International Conference on Information Communication and Management, 16.
  37. TextKernel (2015). mantic search and www.textkernel.com/.
  38. Tijdens, K. and van Klaveren, M. (2012). A skill mismatch for migrant workers? evidence from wageindicator survey data. ILPC2013. http:// www.ilpc.org.uk/Portals/56/ilpc2013-paperupload/ ILPC2013paper-JP Tijdens-Klaveren-final-18.04- kt ILPC 20130309 121708.pdf.
  39. WageIndicator (2015). Salary checks -world wide wage comparison. http://www.wageindicator.org.
  40. William, B. F. and Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms. Prentice Hall.
  41. Yang, X., Guo, D., Cao, X., and Zhou, J. (2008). Research on ontology-based text clustering. Third International Workshop on Semantic Media Adaptation and Personalization, pages 14-146.

Paper Citation

in Harvard Style

Chala S., Ansari F. and Fathi M. (2016). A Framework for Enriching Job Vacancies and Job Descriptions Through Bidirectional Matching . In Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-186-1, pages 219-226. DOI: 10.5220/0005806502190226

in Bibtex Style

author={Sisay Adugna Chala and Fazel Ansari and Madjid Fathi},
title={A Framework for Enriching Job Vacancies and Job Descriptions Through Bidirectional Matching},
booktitle={Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},

in EndNote Style

JO - Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - A Framework for Enriching Job Vacancies and Job Descriptions Through Bidirectional Matching
SN - 978-989-758-186-1
AU - Chala S.
AU - Ansari F.
AU - Fathi M.
PY - 2016
SP - 219
EP - 226
DO - 10.5220/0005806502190226