Evaluation of Requirements Collection Strategies for a Constraint-based Recommender System in a Social e-Learning Platform

Francesco Epifania, Riccardo Porrini

Abstract

The NETT Recommender System (NETT-RS) is a constraint-based recommender system that recommends learning resources to teachers who want to design courses. As for many state-of-the-art constraint-based recommender systems, the NETT-RS bases its recommendation process on the collection of requirements to which items must adhere in order to be recommended. In this paper we study the effects of two different requirement collection strategies on the perceived overall recommendation quality of the NETT-RS. In the first strategy users are not allowed to refine and change the requirements once chosen, while in the second strategy the system allows the users to modify the requirements (we refer to this strategy as backtracking). We run the study following the well established ResQue methodology for user-centric evaluation of RS. Our experimental results indicate that backtracking has a strong positive impact on the perceived recommendation quality of the NETT-RS.

References

  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng., 17(6):734-749.
  2. Balabanovic, M. and Shoham, Y. (1997). Content-based, collaborative recommendation. Commun. ACM, 40(3):66-72.
  3. Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of Library and Information Systems, vol. 69, Supplement 32.
  4. Chen, L. and Pu, P. (2012). Critiquing-based recommenders: survey and emerging trends. User Model. User-Adapt. Interact., 22(1-2):125-150.
  5. Cohen, W. W. (1995). Fast effective rule induction. In ICML, pages 115-123.
  6. de Campos, L. M., Fernández-Luna, J. M., Huete, J. F., and Rueda-Morales, M. A. (2010). Combining contentbased and collaborative recommendations: A hybrid approach based on bayesian networks. Int. J. Approx. Reasoning, 51(7):785-799.
  7. Dietze, S., SanchezAlonso, S., Ebner, H., Yu, H. Q., Giordano, D., Marenzi, I., and Nunes, B. P. (2013). Interlinking educational resources and the web of data: A survey of challenges and approaches. Program, 47(1):60-91.
  8. Felfernig, A. and Burke, R. (2008). Constraint-based recommender systems: Technologies and research issues. In ICEC, pages 3:1-3:10.
  9. Felfernig, A., Friedrich, G., Isak, K., Shchekotykhin, K. M., Teppan, E., and Jannach, D. (2009). Automated debugging of recommender user interface descriptions. Appl. Intell., 31(1):1-14.
  10. Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M. (2011). Developing constraint-based recommenders. In Recommender Systems Handbook, pages 187-215. Springer.
  11. Felfernig, A. and Kiener, A. (2005). Knowledge-based interactive selling of financial services with fsadvisor. In AAAI, pages 1475-1482.
  12. Friedrich, G. and Zanker, M. (2011). A taxonomy for generating explanations in recommender systems. AI Mag., 32(3):90-98.
  13. Hall, M. A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Expl., 11(1):10-18.
  14. Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender Systems - An Introduction. Cambridge University Press.
  15. Lemire, D. and Maclachlan, A. (2005). Slope one predictors for online rating-based collaborative filtering. In SDM, pages 471-475.
  16. Mesiti, M., Valtolina, S., Bassis, S., Epifania, F., and Apolloni, B. (2014). e-teaching assistant - A social intelligent platform supporting teachers in the collaborative creation of courses. In CSEDU, pages 569-575.
  17. Mooney, R. J. and Roy, L. (2000). Content-based book recommending using learning for text categorization. In DL, pages 195-204.
  18. Pazzani, M. J. and Billsus, D. (1997). Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27(3):313-331.
  19. Peterson, R. A. (1994). A meta-analysis of cronbach's coefficient alpha. Journal of Consumer Research, 21(2):381-91.
  20. Pu, P., Chen, L., and Hu, R. (2011a). A user-centric evaluation framework for recommender systems. In RecSys, pages 157-164.
  21. Pu, P., Faltings, B., Chen, L., Zhang, J., and Viappiani, P. (2011b). Usability guidelines for product recommenders based on example critiquing research. In Recommender Systems Handbook, pages 511-545. Springer.
  22. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
  23. Ren, L., He, L., Gu, J., Xia, W., and Wu, F. (2008). A hybrid recommender approach based on widrow-hoff learning. In FGCN (1), pages 40-45.
  24. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grouplens: An open architecture for collaborative filtering of netnews. In CSCW, pages 175-186.
  25. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295.
  26. Shinde, S. K. and Kulkarni, U. (2012). Hybrid personalized recommender system using centering-bunching based clustering algorithm. Expert Syst. Appl., 39(1):1381- 1387.
Download


Paper Citation


in Harvard Style

Epifania F. and Porrini R. (2016). Evaluation of Requirements Collection Strategies for a Constraint-based Recommender System in a Social e-Learning Platform . In Proceedings of the 8th International Conference on Computer Supported Education - Volume 1: CSEDU, ISBN 978-989-758-179-3, pages 376-382. DOI: 10.5220/0005810903760382


in Bibtex Style

@conference{csedu16,
author={Francesco Epifania and Riccardo Porrini},
title={Evaluation of Requirements Collection Strategies for a Constraint-based Recommender System in a Social e-Learning Platform},
booktitle={Proceedings of the 8th International Conference on Computer Supported Education - Volume 1: CSEDU,},
year={2016},
pages={376-382},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005810903760382},
isbn={978-989-758-179-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Computer Supported Education - Volume 1: CSEDU,
TI - Evaluation of Requirements Collection Strategies for a Constraint-based Recommender System in a Social e-Learning Platform
SN - 978-989-758-179-3
AU - Epifania F.
AU - Porrini R.
PY - 2016
SP - 376
EP - 382
DO - 10.5220/0005810903760382