Motion Classification for Analyzing the Order Picking Process using Mobile Sensors - General Concepts, Case Studies and Empirical Evaluation

Sascha Feldhorst, Mojtaba Masoudenijad, Michael ten Hompel, Gernot A. Fink

Abstract

This contribution introduces a new concept to analyze the manual order picking process which is a key task in the field of logistics. The approach relies on a sensor-based motion classification already used in other domains like sports or medical science. Thereby, different sensor data, e. g. acceleration or rotation rate, are continuously recorded during the order picking process. With help of this data, the process can be analyzed to identify different motion classes, like walking or picking, and the time a subject spends in each class. Moreover, relevant motion classes within the order picking process are defined which were identified during field studies in two different companies. These classes are recognized by a classification system working with methods from the field of statistical pattern recognition. The classification is done with a supervised learning approach for which promising results can be shown.

References

  1. Auvinet, B., Gloria, E., Renault, G., and Barrey, E. (2002). Runner's stride analysis: Comparison of kinematic and kinetic analyses under field conditions. Science & Sports, 17(2):92-94.
  2. Bächlin, M., Forster, K., Schumm, J., Breu, D., Germann, J., and Troster, G. (2008). An automatic parameter extraction method for the 7x50m stroke efficiency test. In Proceedings of IPCA, volume 1, pages 442-447.
  3. Bidargaddi, N., Sarela, A., Klingbeil, L., and Karunanithi, M. (2007). Detecting walking activity in cardiac rehabilitation by using accelerometer. In IEEE, editor, Intelligent Sensors, Sensor Networks and Information, 2007., pages 555-560.
  4. Bravo, J., Hervás, R., and Rodríguez, M. (2012). Ambient Assisted Living and Home Care: 4th International Workshop, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3-5, 2012. Proceedings. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg.
  5. Bulling, A., Blanke, U., and Schiele, B. (2014). A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys, 46(3):1-33.
  6. de Koster, R., Le-Duc, T., and Roodbergen, K. J. (2006). Design and control of warehouse order picking: a literature review, volume 2006,005 of ERIM report series research in management Business processes, logistics and information systems. ERIM, Rotterdam.
  7. Dobkin, B. H., Xu, X., Batalin, M., Thomas, S., and Kaiser, W. (2011). Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke. Stroke; a journal of cerebral circulation, 42(8):2246-2250.
  8. Fernández-Llatas, C., Benedi, J.-M., García-G ómez, J. M., and Traver, V. (2013). Process mining for individualized behavior modeling using wireless tracking in nursing homes. Sensors (Basel, Switzerland), 13(11):15434-15451.
  9. Figo, D., Diniz, P. C., Ferreira, D. R., and Cardoso, J. M. (2010). Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7):645-662.
  10. Günthner, W. A. and Steghafner, A. (2011). Kommissioniersystem-Planung mit VR: KomPlanVR ; Forschungsbericht ;. Technische Univ, München.
  11. Hartmann, B. (2011). Human worker activity recognition in industrial environments: KIT, Diss.-Karlsruhe, 2011. KIT Scientific Publishing, Karlsruhe.
  12. HDE (2014). B2c-E-Commerce-Umsatz in Deutschland in den Jahren 1999 bis 2014 sowie eine Prognose für 2015 (in Milliarden Euro).
  13. Jeong, S. Y., Jo, H. G., and Kang, S. J. (2014). Fully distributed monitoring architecture supporting multiple trackees and trackers in indoor mobile asset management application. Sensors (Basel, Switzerland), 14(3):5702-5724.
  14. Koskimäki, H., Huikari, V., Siirtola, P., and Röning, J. (2013). Behavior modeling in industrial assembly lines using a wrist-worn inertial measurement unit. Journal of Ambient Intelligence and Humanized Computing, 4(2):187-194.
  15. Krengel, M., Schmauder, M., Schmidt, T., and Turek, K. (2010). Beschreibung der Dynamik manueller Operationen in logistischen Systemen: Schlussbericht. Dresden.
  16. Linz, T., Kallmayer, C., Aschenbrenner, R., and Reichl, H. (2006). Fully integrated ekg shirt based on embroidered electrical interconnections with conductive yarn and miniaturized flexible electronics. In International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06), pages 23-26.
  17. Long, X., Yin, B., and Aarts, R. M. (2009). Singleaccelerometer-based daily physical activity classification. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2009:6107-6110.
  18. Oppenheim, A. V. and Schafer, R. W. (1999). Discrete time signal processing. Prentice Hall, Upper Saddle River, NJ [u.a.].
  19. Siepenkort, A. (2013). Methode zur Messung und Bewertung der individuellen Kommissionierleistung in Person-zur-Ware-Systemen: Univ., Diss.-Stuttgart, 2012. Berichte aus dem Institut für Fördertechnik und Logistik. Institut für Fördertechnik und Logistik, Stuttgart.
  20. Siirtola, P. (2015). Recognizing human activities based on wearable inertial measurements: methods and applications. PhD thesis, University of Oulu, Department of Computer Science and Engineering.
  21. Stiefmeier, T. (2008). Real-time spotting of human activities in industrial environments: Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 17907- Zürich, 1790. ETH, Zürich.
  22. Stinson, M. R., Sommer, T., and Wehking, K.-H. (2014). Bewertung und Optimierung der Effizienz manueller Tätigkeiten in der Kommissionierung (EfKom): Abschlussbericht. Univ. Inst. für Fördertechnik und Logistik (IFT), Stuttgart.
  23. ten Hompel, M. and Schmidt, T. (2007). Warehouse management: Automation and organisation of warehouse and order picking systems ; with 48 tables ; [with CDROM]. Springer, Berlin.
  24. Toney, A. P., Thomas, B. H., and Marais, W. (2006). Managing smart garments. In Wearable Computers, 2006 10th IEEE International Symposium on, pages 91-94.
  25. Venn, E. and Geißen, T. (2011). Kommissionieren mit System: Mit acht Bausteinen erfolgreich planen. Hebezeuge Fördermittel, 51(6):338-342.
  26. Zhu, Z., Mazilu, S., Hardegger, M., Plotnik, M., Hausdorff, J. M., Roggen, D., and Tröster, G. (2012). Real-time detection of freezing of gait for parkinson's disease patients via smartphone. In Adjunct Proceedings of the 10th International Conference on Pervasive Computing (Pervasive 2012).
  27. Zouba, N., Boulay, B., Bremond, F., and Thonnat, M. (2008). Monitoring activities of daily living (adls) of elderly based on 3d key human postures. In Caputo, B. and Vincze, M., editors, Cognitive Vision, volume 5329 of Lecture Notes in Computer Science, pages 37-50. Springer Berlin Heidelberg.
Download


Paper Citation


in Harvard Style

Feldhorst S., Masoudenijad M., ten Hompel M. and Fink G. (2016). Motion Classification for Analyzing the Order Picking Process using Mobile Sensors - General Concepts, Case Studies and Empirical Evaluation . In Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-173-1, pages 706-713. DOI: 10.5220/0005828407060713


in Bibtex Style

@conference{icpram16,
author={Sascha Feldhorst and Mojtaba Masoudenijad and Michael ten Hompel and Gernot A. Fink},
title={Motion Classification for Analyzing the Order Picking Process using Mobile Sensors - General Concepts, Case Studies and Empirical Evaluation},
booktitle={Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2016},
pages={706-713},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005828407060713},
isbn={978-989-758-173-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Motion Classification for Analyzing the Order Picking Process using Mobile Sensors - General Concepts, Case Studies and Empirical Evaluation
SN - 978-989-758-173-1
AU - Feldhorst S.
AU - Masoudenijad M.
AU - ten Hompel M.
AU - Fink G.
PY - 2016
SP - 706
EP - 713
DO - 10.5220/0005828407060713