Resources Planning in Database Infrastructures

Eden Dosciatti, Marcelo Teixeira, Richardson Ribeiro, Marco Barbosa, Fábio Favarim, Fabrício Enembreck, Dieky Adzkiya


Anticipating resources consumption is essential to project robust database infrastructures able to support transactions to be processed with certain quality levels. In Database-as-a-Service (DBaaS), for example, it could help to construct Service Level Agreements (SLA) to intermediate service customers and providers. A proper database resources assessment can avoid mistakes when choosing technology, hardware, network, client profiles, etc. However, to be properly evaluated, a database transaction usually requires the physical system to be measured, which can be expensive an time consuming. As most information about resource consumption are useful at design time, before developing the whole system, is essential to have mechanisms that partially open the black box hiding the in-operation system. This motivates the adoption of predictive evaluation models. In this paper, we propose a simulation model that can be used to estimate performance and availability of database transactions at design time, when the system is still being conceived. By not requiring real time inputs to be simulated, the model can provide useful information for resources planning. The accuracy of the model is checked in the context of a SLA composition process, in which database operations are simulated and model estimations are compared to measurements collected from a real database system.


  1. Adams, E. J. (1985). Workload models for DBMS performance evaluation. In Proceedings of the 1985 ACM thirteenth annual conference on Computer Science, CSC 7885, pages 185-195, New York, NY, USA. ACM.
  2. Apache (2014). jMeter 2.3.2.
  3. Bruneo, D., Distefano, S., Longo, F., and Scarpa, M. (2010). Qos assessment of ws-bpel processes through nonmarkovian stochastic petri nets. In IEEE International Symposium on Parallel Distributed Processing, pages 1 -12.
  4. Chase, J. S., Anderson, D. C., Thakar, P. N., Vahdat, A. M., and Doyle, R. P. (2001). Managing energy and server resources in hosting centers. In Symposium on Operating Systems Principles, Alberta, Canada.
  5. Desrochers, A. A. (1994). Applications of Petri nets in manufacturing systems: Modeling, control and performance analysis. IEEE Press.
  6. Dewitt, D. J. and Gray, J. (1992). Parallel database systems: the future of high performance database systems. Communications of the ACM, 35:85-98.
  7. Elhardt, K. and Bayer, R. (1984). A database cache for high performance and fast restart in database systems. ACM Transactions on Database Systems, 9:503-525.
  8. Josuttis, N. (2008). SOA in Practice. O'Reilly, 1 edition.
  9. Kartson, D., Balbo, G., Donatelli, S., Franceschinis, G., and Conte, G. (1995). Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., 1st edition.
  10. Kim, S., Son, S., and Stankovic, J. (2002). Performance evaluation on a real-time database. In Real-Time and Embedded Technology and Applications Symposium, 2002. Proceedings. Eighth IEEE, pages 253-265.
  11. Krompass, S., Scholz, A., Albutiu, M.-C., Kuno, H. A., Wiener, J. L., Dayal, U., and Kemper, A. (2008). Quality of service-enabled management of database workloads. IEEE Data(base) Engineering Bulletin, 31:20-27.
  12. Lin, C. and Kavi, K. (2013). A QoS-aware BPEL framework for service selection and composition using QoS properties. Int. Journal On Advances in Software, 6:56-68.
  13. Lumb, C. R., Merchant, A., and Alvarez, G. A. (2003). Fac¸ade: Virtual storage devices with performance guarantees. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies, pages 131- 144, Berkeley, CA, USA. USENIX Association.
  14. Marsan, M. A., Balbo, G., and Conte, G. (1984). A class of generalized stochastic Petri nets for the performance analysis of multiprocessor systems. In ACM Transactions on Computer Systems, volume 2, pages 1-11.
  15. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, v.77, pages 541- 580.
  16. Nicola, M. and Jarke, M. (2000). Performance modeling of distributed and replicated databases. IEEE Trans. on Knowl. and Data Eng., 12(4):645-672.
  17. Osman, R. and Knottenbelt, W. J. (2012). Database system performance evaluation models: A survey. Performance Evaluation, 69(10):471 - 493.
  18. Raibulet, C. and Massarelli, M. (2008). Managing nonfunctional aspects in SOA through SLA. In Int. Conference on Database and Expert Systems Application, Turin, Italy.
  19. Ranganathan, P., Gharachorloo, K., Adve, S. V., and Barroso, L. A. (1998). Performance of database workloads on shared-memory systems with out-of-order processors. Operating Systems Review, 32:307-318.
  20. Reisig, W. and Rozenberg, G. (1998). Informal introduction to petri nets. In Lectures on Petri Nets I: Basic Models, pages 1-11, London, UK. Springer-Verlag.
  21. Reiss, F. R. and Kanungo, T. (2005). Satisfying database service level agreements while minimizing cost through storage QoS. In Proceedings of the IEEE International Conference on Services Computing, volume 2, pages 13-21, Washington, USA.
  22. Rud, D., Schmietendorf, A., and Dumke, R. (2007). Performance annotated business processes in serviceoriented architectures. International Journal of Simulation: Systems, Science & Technology, 8(3):61-71.
  23. Schroeder, B., Harchol-Balter, M., Iyengar, A., and Nahum, E. (2006). Achieving class-based QoS for transactional workloads. In Proceedings of the 22nd International Conference on Data Engineering, Washington, DC, USA. IEEE Computer Society.
  24. Sturm, R., Morris, W., and Jander, M. (2000). Foundations of Service Level Management. Sams Publishing.
  25. Teixeira, M. and Chaves, P. S. (2011). Planning database service level agreements through stochastic petri nets. In Brazilian Symposium on Databases, Florianopolis, Brazil.
  26. Teixeira, M., Lima, R., Oliveira, C., and Maciel, P. (2011). Planning service agreements in SOA-based systems through stochastic models. In ACM Symposium On Applied Computing, TaiChung, Taiwan.
  27. Teixeira, M., Ribeiro, R., Oliveira, C., and Massa, R. (2015). A quality-driven approach for resources planning in service-oriented architectures. Expert Systems with Applications, 42(12):5366 - 5379.
  28. Tok, W. H. and Bressan, S. (2006). DBNet: A serviceoriented database architecture. International Workshop on Database and Expert Systems Applications, pages 727-731.
  29. Tomov, N., Dempster, E., Williams, M. H., Burger, A., Taylor, H., King, P. J. B., and Broughton, P. (2004). Analytical response time estimation in parallel relational database systems. Parallel Comput., 30:249-283.
  30. Zhou, S., Tomov, N., Williams, M. H., Burger, A., and Taylor, H. (1997). Cache modeling in a performance evaluator for parallel database systems. In MASCOTS, pages 46-50.
  31. Zimmermann, A. (2014). TimeNET 4.0. Technische Universität Ilmenau, URL:

Paper Citation

in Harvard Style

Dosciatti E., Teixeira M., Ribeiro R., Barbosa M., Favarim F., Enembreck F. and Adzkiya D. (2016). Resources Planning in Database Infrastructures . In Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-187-8, pages 53-62. DOI: 10.5220/0005831700530062

in Bibtex Style

author={Eden Dosciatti and Marcelo Teixeira and Richardson Ribeiro and Marco Barbosa and Fábio Favarim and Fabrício Enembreck and Dieky Adzkiya},
title={Resources Planning in Database Infrastructures},
booktitle={Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 18th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Resources Planning in Database Infrastructures
SN - 978-989-758-187-8
AU - Dosciatti E.
AU - Teixeira M.
AU - Ribeiro R.
AU - Barbosa M.
AU - Favarim F.
AU - Enembreck F.
AU - Adzkiya D.
PY - 2016
SP - 53
EP - 62
DO - 10.5220/0005831700530062