Content based Image Retrieval Databases Classification with Brain Event Related Potential

Rodrigo Prior Bechelli

Abstract

This paper evaluates and compile information related to Electroencephalography (EEG) used as a pattern to classify a Content Based Image Retrieval (CBIR) system based on an Event Related Potential (ERP) as an input data vector to classify an image database. The Rapid Serial Visual Presentation (RSVP) is used as a method to present multiple images to obtain a series of P300 brain response and specify the duality of target or non- target images (oddball paradigm).

References

  1. Deserno, T. M., Antani, S., and Long, R. (2009). Ontology of gaps in content-based image retrieval. Journal of digital imaging, 22(2):202-15.
  2. Donchin, E. and Arbel, Y. (2009). P300 based brain computer interfaces: A progress report. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5638 LNAI, pages 724- 731.
  3. Donchin, E., Ritter, W., and McCallum, C. (1978). Cognitive psychophysiology: The endogenous components of the ERP.
  4. Duffy, F. H., Iyer, V. G., and Surwillo, W. W. (1999). Eletroencefalografia Clínica e Mapeamento Cerebral Topográfico: Tecnologia e Prática. Revinter Ltda, 1 edition.
  5. Duvinage, M., Castermans, T., Dutoit, T., Petieau, M., Hoellinger, T., Saedeleer, C., Seetharaman, K., and Cheron, G. (2012). A P300-based quantitative comparison between the emotiv epoc headset and a medical EEG device. Proceedings of the 9th IASTED International Conference on Biomedical Engineering, BioMed 2012, pages 37-42.
  6. Ekanayake, H. (2010). P300 and Emotiv EPOC: Does Emotiv EPOC capture real EEG? Web publication http://neurofeedback. visaduma. info/ . . . , page 16.
  7. Emotiv, S. (2011). EMOTIV EPOC: Brain Computer Interface & Scientific Contextual EEG.
  8. Farwell, L. a. and Donchin, E. (1988). Talking Off the Top of Your Head. electroencephalography and clinical Neurophysiology, 70(6):510-523.
  9. Fei-Fei, L., Fergus, R., and Perona, P. (2007). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70.
  10. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., and Hämäläinen, M. (2013). MEG and EEG data analysis with MNEPython. Frontiers in Neuroscience, (7 DEC).
  11. Healy, G. and Smeaton, A. (2011). Optimising the number of channels in EEG-augmented image search. Proceedings of the 25th BCS Conference on . . . , pages 1-6.
  12. Khosla, D., Bhattacharyya, R., Tasinga, P., and Huber, D. J. (2011). Optimal Detection of Objects in Images and Videos Using Electroencephalography (EEG) Deepak. In Kadar, I., editor, SPIE Defense, Security, and Sensing, pages 80501C-80501C-11. International Society for Optics and Photonics.
  13. Liu, Y., Zhang, D., Lu, G., and Ma, W. Y. (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40:262-282.
  14. Mohedano, E., Healy, G., McGuinness, K., Giró-i Nieto, X., O'Connor, N. E., and Smeaton, A. F. (2014). Object Segmentation in Images using EEG Signals. In Proceedings of the ACM International Conference on Multimedia - MM 7814, pages 417-426, New York, New York, USA. ACM Press.
  15. Oliphant, T. E. (2007). SciPy: Open source scientific tools for Python. Computing in Science and Engineering, 9:10-20.
  16. Pérez, F. and Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science and Engineering, 9(3):21-29.
  17. Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O., and Lécuyer, A. (2010). OpenViBE: An Open-Source Software Platform to Design, Test, and Use Brain-Computer Interfaces in Real and Virtual Environments.
  18. Somol, P., Pudil, P., Novovic?ová, J., and Paclík, P. (1999). Adaptive floating search methods in feature selection. Pattern Recognition Letters, 20(11-13):1157-1163.
  19. Sutton, S., Braren, M., Zubin, J., and John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science (New York, N.Y.), 150(700):1187-1188.
  20. Tong, S. and Chang, E. (2001). Support vector machine active learning for image retrieval. Proceedings of the ninth ACM international conference on Multimedia MULTIMEDIA 01, 54(C):107.
  21. Us?cumlic, M., Chavarriaga, R., and Millán, J. d. R. (2011). On coupling Computer Vision and Single trial detection of ERP under RSVP. International Journal of Bioelectromagnetism, 13(3):133-135.
  22. Us?cumlic, M., Chavarriaga, R., and Millán, J. D. R. (2013). An iterative framework for EEG-based image search: robust retrieval with weak classifiers. PloS one, 8(8):e72018.
  23. Wang, J., Pohlmeyer, E., Hanna, B., Jiang, Y., Sajda, P., Chang, S., and Jun Wang, Eric Pohlmeyer, Barbara Hanna, Yu-gang Jiang, Paul Sajda, S.-f. C. (2009). Brain State Decoding for Rapid Image Retrieval. In Proceedings of the seventeen ACM international conference on Multimedia, pages 945-954.
Download


Paper Citation


in Harvard Style

Bechelli R. (2016). Content based Image Retrieval Databases Classification with Brain Event Related Potential . In Doctoral Consortium - DCBIOSTEC, ISBN , pages 3-8


in Bibtex Style

@conference{dcbiostec16,
author={Rodrigo Prior Bechelli},
title={Content based Image Retrieval Databases Classification with Brain Event Related Potential},
booktitle={Doctoral Consortium - DCBIOSTEC,},
year={2016},
pages={3-8},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCBIOSTEC,
TI - Content based Image Retrieval Databases Classification with Brain Event Related Potential
SN -
AU - Bechelli R.
PY - 2016
SP - 3
EP - 8
DO -