Total Information Transmission between Autonomous Agents

Bernat Corominas-Murtra


This note explores the current framework of information theory to quantify the amount of semantic content of a given message is sent in a given communicative exchange. Meaning issues have been out of the mainstream of information theory since its foundation. However, in spite of the enormous success of the theory, recent advances on the study of the emergence of shared codes in communities of autonomous agents revealed that the issue of meaningful transmission cannot be easily avoided and needs a general framework. This is due to the absence of designer/engineer and the presence of functional/semantic pressures within the process of shaping new codes or languages. To overcome this issue, we demonstrate that the classical Shannon framework can be expanded to accommodate a minimal explicit incorporation of meaning within the communicative exchange.


  1. Ay, N. M üller, M. & Szkola, (2010) A Effective complexity and its relation to logical depth. IEEE Trans. on Inform. Theory 56(9): 4593-4607.
  2. Cangelosi A. & Parisi D. (Eds.) (2000) Simulating the Evolution of Language. (Springer: London).
  3. Bar-Hillel, Y. & Carnap, R. (1953) Semantic Information The British Jour. for the Phil. of Sci., 4, 14 147-157.
  4. Chaitin, G-J.(1966) On the length of programs for computing finite binary sequences.J ACM 13, 547-569.
  5. Corominas-Murtra, B., Fortuny, J. & Solé, R. (2014) Towards a mathematical theory of meaningful communicationNature Scientific Reports4, 4587.
  6. Cover, T. M. and Thomas, J.-A. (2001) Elements of Information Theory (John Wiley and Sons:New York).
  7. Gell-mann, M. & Lloyd, S. (1996) Information measures, effective complexity, and total information.Complexity 2 144-52.
  8. Hopfield, J. (1994) Physics, computation, and why biology looks so different. J. Theor.l Biol.171 53.
  9. Hurford, J. (1989) Biological evolution of the Saussurean sign as a component of the language acquisition device. Lingua 77, 187.
  10. Kolmogorov, A.(1965) Logical basis for information theory and probability theory. Problems Inform Transmission 1, 1-7.
  11. Komarova N. L. and Niyogi,P. (2004) Optimizing the mutual intelligibility of linguistic Agents in a shared World. Art. Int.154 1.
  12. Kripke, S. (1982) Wittgenstein on Rules and Private Language. (Oxford:Blackwell).
  13. Ming, L, Vitányi, P (1997) An introduction to Kolmogorov complexity and its applications. (Springer:New York).
  14. Niyogi, P. (2006). The Computational Nature of Language Learning and Evolution. )MIT Press. Cambridge, Mass).
  15. Nowak, M. A. and Krakauer, D.(1999) The Evolution of Language. Proc. Nat. Acad. Sci. USA96 8028
  16. Saussure, F. (1916) Cours de Linguistique Génárale. (Biblioth que scientifique Payot. Paris:France).
  17. Solomonoff, R.(1964) A Formal Theory of Inductive Inference. Inform and Control 7-1, 1-22.
  18. Steels, L. (2001) Language games for Autonomous Robots.IEEE Int. Syst.16, 16
  19. Steels, L. (2003) Evolving grounded communication for robots.Trends. Cogn. Sci. 7 308.
  20. Wittgenstein, L. (1953) Philosophical Investigations in Anscombe, G. E. M., and Rhees R. (eds.) (Oxford: Blackwell).

Paper Citation

in Harvard Style

Corominas-Murtra B. (2016). Total Information Transmission between Autonomous Agents . In Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS, ISBN 978-989-758-181-6, pages 21-25. DOI: 10.5220/0005875300210025

in Bibtex Style

author={Bernat Corominas-Murtra},
title={Total Information Transmission between Autonomous Agents},
booktitle={Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,},

in EndNote Style

JO - Proceedings of the 1st International Conference on Complex Information Systems - Volume 1: COMPLEXIS,
TI - Total Information Transmission between Autonomous Agents
SN - 978-989-758-181-6
AU - Corominas-Murtra B.
PY - 2016
SP - 21
EP - 25
DO - 10.5220/0005875300210025