Interactive Visualization and Big Data - A Management Perspective

Thomas Plank, Markus Helfert


This position paper presents a systematic literature review that aims to identify research topics and future research possibilities in the area of interactive visualizations of big data in a management perspective. Therefore, the authors reviewed journals listed in the Index of Information Systems Journals and the Computing Research and Education Association derived from the databases “EBSCO Business Source Premier”, “Sage Premier” and “Science Direct” from 2005 to 2015. The authors reviewed 993 abstracts and identified 122 peer-reviewed publications as relevant to the topic. Based on this interdisciplinary collection of research papers, the authors will identify the key research topics and derive future research possibilities that need to be undertaken.


  1. Al-Kassab, J. et al., 2014. Information visualization to support management decisions. International Journal of Information Technology & Decision Making, 13(2), pp.407-428.
  2. Arave, G. et al., 2014. Big data, bigger dilemmas: A critical review. Journal of the Association for Information Science and Technology, (AUGUST).
  3. Bryman, A. & Bell, E., 2011. Business Research Methods, Burford, S. & Park, S., 2014. The impact of mobile tablet devices on human information behaviour. Journal of Documentation, 70(4), pp.622-639.
  4. Card, S.K., Mackinlay, J.D. & Shneiderman, B., 1999. Readings in Information Visualization: Using Vision to Think. In Information Display. p. 686.
  5. Chen, H., Chiang, R.H.L. & Storey, V.C., 2012. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), pp.1165-1188.
  6. Cuzzocrea, A., Song, I.-Y. & Davis, K.C., 2011. Analytics over large-scale multidimensional data: the big data revolution! … 14th international workshop on Data, pp.101-104.
  7. Elmqvist, N. et al., 2011. Fluid interaction for information visualization. Information Visualization, 10(4), pp.327-340.
  8. Falschlunger, L., Lehner, O., Losbichler, H., Grabmann, E., 2015. Deriving a holistic cognitive fit model for an optimal visualization of data for managmeent decisions. Proceedings of the International Symposium on Partial Least Spare Path Modeling, Seville, pp.1-6.
  9. Falschlunger, L., Lehner, O., Treiblmaier, H., Eisl, C., 2016. Perceptive efficiency given visual representations of information: the effect of experience. Proceedings of 49th Hawaii International Conference on System Sciences (HICSS-49), pp. 668- 676.
  10. Funke, J., 2010. Complex problem solving: A case for complex cognition? Cognitive Processing, 11(2), pp.133-142.
  11. Green, T.M. & Fisher, B., 201f0. Towards the personal equation of interaction: The impact of personality factors on visual analytics interface interaction. VAST 10 - IEEE Conference on Visual Analytics Science and Technology 2010, Proceedings, pp.203-210.
  12. Heer, J. et al., 2008. Graphical histories for visualization: Supporting analysis, communication, and evaluation. IEEE Transactions on Visualization and Computer Graphics, 14(6), pp.1189-1196.
  13. Howe, D. et al., 2008. Big data: The future of biocuration. Nature, 455(7209), pp.47-50.
  14. Keim, D., 2002. Information Visualization and Visual Data Mining. IEEE Transations on Visulization and Computer Graphics, 8(1), pp.1-8.
  15. Keim, D.A. et al., 2004. Visual Data Mining in Large Geospatial Point Sets. IEEE Computer Graphics and Applications, 24(5), pp.36-44.
  16. Knauff, M. & Wolf, A.G., 2010. Complex cognition: The science of human reasoning, problem-solving, and decision-making. Cognitive Processing, 11, pp.99- 102.
  17. Laney, D., 2001. 3D Data Management: Controlling Data Volume, Velocity, and Variety. Application Delivery Strategies, 949(February 2001), p.4.
  18. Lemieux, V.L., Gormly, B. & Rowledge, L., 2014. Meeting big data challenges with visual analytics. Records Management Journal, 24(2), pp.122-141.
  19. Levy, Y. & Ellis, T.J., 2006. A Systems Approach to Conduct an Effective Literature Review in Support of Information Systems Research. Science Journal, 9(1), pp.181-212.
  20. Meyer, J. et al., 2007. From Visualization to Visually Enabled Reasoning. Scientific Visualization Advanced Concepts, 1, pp.227-245.
  21. Okoli, C. & Schabram, K., 2010. A Guide to Conducting a Systematic Literature Review of Information Systems Research. Working Papers on Information Systems, 10(26), pp.1-51.
  22. Philip Chen, C.L. & Zhang, C.-Y., 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, pp.314-347.
  23. Schoenherr, T. & Speier-Pero, C., 2015. Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential. Journal of Business Logistics, 36(1), pp.120-132.
  24. Sedig, K. & Parsons, P., 2013. Interaction Design for Complex Cognitive Activities with Visual Representations: A Pattern-Based Approach. AIS Transactions on Human-Computer Interaction, 2(5), pp.84-133.
  25. Segel, E. & Heer, J., 2010. Narrative visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics, 16(6), pp.1139-1148.
  26. Shneiderman, B., 2002. Inventing discovery tools: combining information visualization with data mining. Information Visualization, 1(1), pp.5-12.
  27. Spink, A. & Cole, C., 2006. Human Information Behavior: Integrating Diverse Approaches and Information Use. Journal of the American Society for Information Science and Technology, 57(1), pp.25-35.
  28. Tortosa-Edo, V. et al., 2013. The antecedent role of personal environmental values in the relationships among trust in companies, information processing and risk perception. Journal of Risk Research, 17(8), pp.1- 17.
  29. Webster, J. & Watson, R.T., 2002. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), pp.xiii - xxiii.
  30. Zikopoulos, P. & Eaton, C., 2011. Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data.

Paper Citation

in Harvard Style

Plank T. and Helfert M. (2016). Interactive Visualization and Big Data - A Management Perspective . In Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-186-1, pages 42-47. DOI: 10.5220/0005903700420047

in Bibtex Style

author={Thomas Plank and Markus Helfert},
title={Interactive Visualization and Big Data - A Management Perspective},
booktitle={Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},

in EndNote Style

JO - Proceedings of the 12th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - Interactive Visualization and Big Data - A Management Perspective
SN - 978-989-758-186-1
AU - Plank T.
AU - Helfert M.
PY - 2016
SP - 42
EP - 47
DO - 10.5220/0005903700420047