A MapReduce based Big-data Framework for Object Extraction from Mosaic Satellite Images

Süleyman Eken, Ahmet Sayar

Abstract

We propose a framework stitching of vector representations of large scale raster mosaic images in distributed computing model. In this way, the negative effect of the lack of resources of the central system and scalability problem can be eliminated. The product obtained by this study can be used in applications requiring spatial and temporal analysis on big satellite map images. This study also shows that big data frameworks are not only used in applications of text-based data mining and machine learning algorithms, but also used in applications of algorithms in image processing. The effectiveness of the product realized with this project is also going to be proven by scalability and performance tests performed on real world LandSat-8 satellite images.

References

  1. Ablimit A., Fusheng W., Hoang V., Rubao L., Qiaoling L., Xiaodong Z., Joel S., 2013. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce. Proceedings VLDB Endowment, 6(11): 1-33, 2013.
  2. Ahmed E., Mohamed F. M., 2014. The Era of Big Spatial Data. In Proceedings of the International Workshop of Cloud Data Management.
  3. Ahmed E., Mohamed F. M., 2013. A Demonstration of SpatialHadoop: An Efficient MapReduce Framework for Spatial Data. In VLDB.
  4. Ahmed E., Mohamed F. M., Alharthi S., Alzaidy A., Tarek K., Ghani S., 2015. SHAHED: A MapReducebased System for Querying and Visualizing Spatiotemporal Satellite Data. In ICDE.
  5. Alarabi L., Ahmed E., Alghamdi R., Mohamed F. M., 2014. TAREEG: A MapReduce-Based System for Extracting Spatial Data from Open-StreetMap. In SIGSPATIAL.
  6. Daniels K., and Inkulu, R., 2001. Translational polygon covering using intersection graphs. In Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG'01), 61-64.
  7. Dawn, S., Saxena, V., Sharma B., 2010. Remote sensing image registration techniques: a survey. Image and Signal Processing, Springer, 103-112.
  8. Dean, J., Ghemawat, S., 2010. MapReduce: A Flexible Data Processing Tool. Communications of ACM, 53(1), 72-77.
  9. Eken, S. and Sayar A., 2015a. An Automated Technique to Determine Spatiotemporal Changes in Satellite Island Images with Vectorization and Spatial Queries. Sadhana - Academy Proceedings in Engineering Science, 40(1), 121-137.
  10. Eken, S. and Sayar, A., 2015b. Big data frameworks for efficient range queries to extract interested rectangular sub regions. International Journal of Computer Applications, 119(22), 36-39.
  11. Ermias, B.T., 2011. Distributed Processing Of Large Remote Sensing Images Using MapReduce: A case of Edge Detection. Master Thesis, Münster, North-Rhine Westphalia, Germany.
  12. Giachetta, R., 2014. AEGIS - A state-of-the-art spatiotemporal framework for education and research. OSGeo Journal, 13, 68-77.
  13. Golpayegani, N., Halem, M., 2009. Cloud Computing for Satellite Data Processing on High End Compute Clusters. IEEE International Conference on Cloud Computing.
  14. Lajiao C., Yan M., Peng L., Jingbo W., Wei J., Jijun H., 2015. A review of parallel computing for large-scale remote sensing image mosaicking. Cluster Computing, 18(2), 517-529.
  15. Lv, Z., Hu, Y., Zhong, H., Wu, J., Li, B., Zhao, H., 2010. Parallel K-Means Clustering of Remote Sensing Images Based on MapReduce. Springer-Verlag Berlin Heidelberg, 162-170.
  16. Mamta B., Abhishek C.,Anshu P., Sivakumar V., 2013. High Performance Computing for Satellite Image Processing and Analyzing - A Review. International Journal of Computer Applications Technology and Research, 2(4): 424-430.
  17. Royce, W., 1970. Managing the Development of Large Software Systems. Proceedings of IEEE WESCON, 1- 9.
  18. Sayar A., Eken, S., Mert, U., 2013. Registering LandSat-8 Mosaic Images: A Case Study on the Marmara Sea. In IEEE 10th International Conference on Electronics Computer and Computation, 375-377.
  19. Sayar, A., Eken, S., Mert, Ü., 2014. Tiling of Satellite Images to Capture an Island Object. Communications in Computer and Information Science, Springer, 459, 195-204.
  20. Smith, J., 1998. The book, The publishing company. London, 2nd edition.
  21. Winslett, M., Cary, A., Sun, Z., Hristidis, V., Rishe, N., 2009. Experiences on Processing Spatial Data with MapReduce. Scientific and Statistical Database Management, Springer, 302-319.
  22. Zitova, B., Flusser, J., 2003. Image registration methods: a survey, Image and vision computing, 21, 977-1000.
Download


Paper Citation


in Harvard Style

Eken S. and Sayar A. (2016). A MapReduce based Big-data Framework for Object Extraction from Mosaic Satellite Images . In Doctoral Consortium - DCIT, (IOTBD 2016) ISBN , pages 14-18


in Bibtex Style

@conference{dcit16,
author={Süleyman Eken and Ahmet Sayar},
title={A MapReduce based Big-data Framework for Object Extraction from Mosaic Satellite Images},
booktitle={Doctoral Consortium - DCIT, (IOTBD 2016)},
year={2016},
pages={14-18},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCIT, (IOTBD 2016)
TI - A MapReduce based Big-data Framework for Object Extraction from Mosaic Satellite Images
SN -
AU - Eken S.
AU - Sayar A.
PY - 2016
SP - 14
EP - 18
DO -