Towards Performance Prediction in Massive Scale Datastores

Francisco Cruz, Fábio Coelho, Rui Oliveira

Abstract

Buffer caching mechanisms are paramount to improve the performance of today’s massive scale NoSQL databases. In this work, we show that in fact there is a direct and univocal relationship between the resource usage and the cache hit ratio in NoSQL databases. In addition, this relationship can be leveraged to build a mechanism that is able to estimate resource usage of the nodes composing the NoSQL cluster.

References

  1. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E. (2006). Bigtable: a distributed storage system for structured data. In OSDI.
  2. Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Benchmarking cloud serving systems with YCSB. In SoCC.
  3. George, L. (2011). HBase: The Definitive Guide . O'Reilly.
  4. Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). Zookeeper: Wait-free coordination for internet-scale systems. In Proceedings of USENIX Conference on USENIX Annual Technical Conference, USENIXATC'10, pages 11-11.
  5. L., A. and M., P. (2009). Cassandra - a decentralized structured storage system. In LADIS.
  6. Puzak, T. R. (1985). Analysis of Cache Replacementalgorithms. PhD thesis. AAI8509594.
  7. Sleator, D. D. and Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Commun. ACM, pages 202-208.
Download


Paper Citation


in Harvard Style

Cruz F., Coelho F. and Oliveira R. (2016). Towards Performance Prediction in Massive Scale Datastores . In Proceedings of the 6th International Conference on Cloud Computing and Services Science - Volume 1: DataDiversityConvergence, (CLOSER 2016) ISBN 978-989-758-182-3, pages 371-373. DOI: 10.5220/0005929203710373


in Bibtex Style

@conference{datadiversityconvergence16,
author={Francisco Cruz and Fábio Coelho and Rui Oliveira},
title={Towards Performance Prediction in Massive Scale Datastores},
booktitle={Proceedings of the 6th International Conference on Cloud Computing and Services Science - Volume 1: DataDiversityConvergence, (CLOSER 2016)},
year={2016},
pages={371-373},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005929203710373},
isbn={978-989-758-182-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Cloud Computing and Services Science - Volume 1: DataDiversityConvergence, (CLOSER 2016)
TI - Towards Performance Prediction in Massive Scale Datastores
SN - 978-989-758-182-3
AU - Cruz F.
AU - Coelho F.
AU - Oliveira R.
PY - 2016
SP - 371
EP - 373
DO - 10.5220/0005929203710373