Big IoT and Social Networking Data for Smart Cities - Algorithmic Improvements on Big Data Analysis in the Context of RADICAL City Applications

Evangelos Psomakelis, Fotis Aisopos, Antonios Litke, Konstantinos Tserpes, Magdalini Kardara, Pablo Martínez Campo

Abstract

In this paper we present a SOA (Service Oriented Architecture)-based platform, enabling the retrieval and analysis of big datasets stemming from social networking (SN) sites and Internet of Things (IoT) devices, collected by smart city applications and socially-aware data aggregation services. A large set of city applications in the areas of Participating Urbanism, Augmented Reality and Sound-Mapping throughout participating cities is being applied, resulting into produced sets of millions of user-generated events and online SN reports fed into the RADICAL platform. Moreover, we study the application of data analytics such as sentiment analysis to the combined IoT and SN data saved into an SQL database, further investigating algorithmic and configurations to minimize delays in dataset processing and results retrieval.

References

  1. Aisopos, F., 0001, G.P., Tserpes, K., Varvarigou, T.A., 2012. Content vs. context for sentiment analysis: a comparative analysis over microblogs., in: Munson, E.V., Strohmaier, M. (Eds.), HT. ACM, pp. 187-196.
  2. Amati, G., Angelini, S., Bianchi, M., Costantini, L., Marcone, G., 2014. A scalable approach to near realtime sentiment analysis on social networks. Inf. Filter. Retr. 12.
  3. Apache Mahout: Scalable machine learning and data mining [WWW Document], n.d. URL http://mahout.apache.org/ (accessed 4.8.15).
  4. Bifet, A., Frank, E., 2010. Sentiment Knowledge Discovery in Twitter Streaming Data, in: Proceedings of the 13th International Conference on Discovery Science, DS'10. Springer-Verlag, Berlin, Heidelberg, pp. 1-15.
  5. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B., 2010. MOA: Massive Online Analysis. J. Mach. Learn. Res. 11, 1601-1604.
  6. Breslin, J., Decker, S., 2007. The Future of Social Networks on the Internet: The Need for Semantics. IEEE Internet Comput. 11, 86-90. doi:10.1109/MIC.2007.138.
  7. Breslin, J.G., Decker, S., Hauswirth, M., Hynes, G., Phuoc, D.L., Passant, A., Polleres, A., Rabsch, C., Reynolds, V., 2009. Integrating Social Networks and Sensor Networks, in: Proceedings on the W3C Workshop on the Future of Social Networking.
  8. Calabrese, F., Kloeckl, K., Ratti, C., 2007. Wikicity: Realtime location-sensitive tools for the city IEEE Pervasive Computing, 390-413.
  9. Conti, M., Passarella, A., Pezzoni, F., 2011. A model for the generation of social network graphs., in: WOWMOM. IEEE Computer Society, pp. 1-6.
  10. Fan, M., Khademi, M., 2014. Predicting a Business Star in Yelp from Its Reviews Text Alone. CoRR abs/1401.0864.
  11. Giannakopoulos, G., Karkaletsis, V., Vouros, G.A., Stamatopoulos, P., 2008. Summarization system evaluation revisited: N-gram graphs. TSLP 5.
  12. Godbole, N., Srinivasaiah, M., Skiena, S., 2007. LargeScale Sentiment Analysis for News and Blogs, in: Proceedings of the International Conference on Weblogs and Social Media (ICWSM).
  13. GrowSmarter, 2016. Grow Smarter project [WWW Document]. URL http://www.grow-smarter.eu/home/
  14. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., 2012. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. CoRR abs/1207.0203.
  15. He, Q., Zhuang, F., Li, J., Shi, Z., 2010. Parallel Implementation of Classification Algorithms Based on MapReduce, in: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (Eds.), Rough Set and Knowledge Technology, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 655-662.
  16. Liu, B., Blasch, E., Chen, Y., Shen, D., Chen, G., 2013. Scalable sentiment classification for Big Data analysis using Na #x00EF;ve Bayes Classifier, in: Big Data, 2013 IEEE International Conference on. pp. 99-104. doi:10.1109/BigData.2013.6691740.
  17. Marz, N., Warren, J., 2015. Big Data: Principles and best practices of scalable realtime data systems, 1 edition. ed. Manning Publications, Westampton.
  18. MEKA: A Multi-label Extension to WEKA [WWW Document], n.d. URL http://meka.sourceforge.net/ (accessed 3.27.15).
  19. Miluzzo, E., Lane, N.D., Eisenman, S.B., Campbell, A.T., 2007. CenceMe - Injecting Sensing Presence into Social Networking Applications., in: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (Eds.), EuroSSC, Lecture Notes in Computer Science. Springer, pp. 1-28.
  20. Murty, R., Gosain, A., Tierney, M., Brody, A., Fahad, A., Bers, J., Welsh, M., 2007. Harvard University Technical Report. TR1307.
  21. Page, X.W., Kobsa, A., 2010. Navigating the social terrain with google latitude. iConference Urbana Champaign, p.174178.
  22. Pang, B., Lee, L., 2008. Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1-135.
  23. Pang, B., Lee, L., Vaithyanathan, S., 2002. Thumbs up? Sentiment Classification Using Machine Learning Techniques, in: emnlp2002. Philadelphia, Pennsylvania, pp. 79-86.
  24. Perera, C., Zaslavsky, A.B., Christen, P., Georgakopoulos, D., 2013. Sensing as a Service Model for Smart Cities Supported by Internet of Things. CoRR abs/1307.8198.
  25. Psomakelis, E., Tserpes, K., Anagnostopoulos, D., Theodora, V., 2014. Comparing Methods for Twitter Sentiment Analysis. Proc. 6th Int. Conf. Knowl. Discov. Inf. Retr. - KDIR 2014 225-232.
  26. RADICAL, 2016. Rapid Deployment for Intelligent Cities and Living, FP7 EU funded Research project [WWW Document]. URL http://www.radical-project.eu.
  27. Read, J., Martino, L., Olmos, P.M., Luengo, D., 2015. Scalable multi-output label prediction: From classifier chains to classifier trellises. Pattern Recognit. 48, 2096-2109. doi:10.1016/j.patcog.2015.01.004.
  28. Romero Lankao, P., 2008. Urban areas and climate change: Review of current issues and trends. Issues Pap. 2011 Glob. Rep. Hum. Settl.
  29. Sakaki, T., Okazaki, M., Matsuo, Y., 2013. Tweet analysis for real-time event detection and earthquake reporting system development. Knowl. Data Eng. IEEE Trans. On 25, 919-931.
  30. Sanchez, L., 2010. SmartSantander: Experimenting The Future Internet in the City of the Future. Presented at the PIMRC2010, Istanbul, Turkey.
  31. SmartSantander, 2013. SmartSantander, FP7 EU funded Research project [WWW Document]. URL http://www.smartsantander.eu/
  32. SocIoS, 2013. Exploiting Social Networks for Building the Future Internet of Services, FP7 EU funded Research project [WWW Document]. URL http://www.sociosproject.eu/
  33. Strohbach, M., Ziekow, H., Gazis, V., Akiva, N., 2015. Towards a big data analytics framework for IoT and smart city applications, in: Modeling and Processing for Next-Generation Big-Data Technologies. Springer, pp. 257-282.
  34. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (Eds.), 2010. Vision and Challenges for Realising the Internet of Things. Publications Office of the European Union, Luxembourg.
  35. Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S., 2012. A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle., in: ACL (System Demonstrations). The Association for Computer Linguistics, pp. 115-120.
  36. Zhao, J., Dong, L., Wu, J., Xu, K., 2012. MoodLens: an emoticon-based sentiment analysis system for chinese tweets., in: 0001, Q.Y., Agarwal, D., Pei, J. (Eds.), KDD. ACM, pp. 1528-1531.
Download


Paper Citation


in Harvard Style

Psomakelis E., Aisopos F., Litke A., Tserpes K., Kardara M. and Campo P. (2016). Big IoT and Social Networking Data for Smart Cities - Algorithmic Improvements on Big Data Analysis in the Context of RADICAL City Applications . In Proceedings of the 6th International Conference on Cloud Computing and Services Science - Volume 1: DataDiversityConvergence, (CLOSER 2016) ISBN 978-989-758-182-3, pages 396-405. DOI: 10.5220/0005934503960405


in Bibtex Style

@conference{datadiversityconvergence16,
author={Evangelos Psomakelis and Fotis Aisopos and Antonios Litke and Konstantinos Tserpes and Magdalini Kardara and Pablo Martínez Campo},
title={Big IoT and Social Networking Data for Smart Cities - Algorithmic Improvements on Big Data Analysis in the Context of RADICAL City Applications},
booktitle={Proceedings of the 6th International Conference on Cloud Computing and Services Science - Volume 1: DataDiversityConvergence, (CLOSER 2016)},
year={2016},
pages={396-405},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005934503960405},
isbn={978-989-758-182-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Cloud Computing and Services Science - Volume 1: DataDiversityConvergence, (CLOSER 2016)
TI - Big IoT and Social Networking Data for Smart Cities - Algorithmic Improvements on Big Data Analysis in the Context of RADICAL City Applications
SN - 978-989-758-182-3
AU - Psomakelis E.
AU - Aisopos F.
AU - Litke A.
AU - Tserpes K.
AU - Kardara M.
AU - Campo P.
PY - 2016
SP - 396
EP - 405
DO - 10.5220/0005934503960405