UAV Technology Integration for Remote Sensing Image Analysis

Marco Piragnolo, Francesco Pirotti


In the last few years unmanned aircraft vehicles (UAVs) have achieved considerable success with an increasing number of operators. High-resolution images "on demand" are obtained by camera and multispectral sensors. Fields of application are various, from three-dimensional survey of morphological aspects of the terrain, to environmental analysis and forestry. Issues related to these new technologies include assessing the quality of the survey, assessment of accuracy and errors, image interpretation, use of information obtained from radiometric sensors. In particular the main focus of this project is to use a multilevel remote sensing framework in order to integrate information obtained through UAV images, satellite images from Sentinel I and II, radiometric analysis, and spatial information in order to derive informative maps to be used for educated decision support.


  1. Baumann, P., 2014. Spatio-Temporal Big Data the rasdaman approach, p.32. Available at: daman/BigDataRasdamanWorkshop.pdf.
  2. Berni, J., Zarco-Tejada, P. J., Suarez, L., Fereres, E., 2009. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47, pp.722-738.
  3. Breiman, L., 2001. Random forests. Machine Learning, 45, 5-32. doi:10.1023/A:1010933404324.
  4. Coppa, U., Guarnieri, A., Pirotti, F., and Vettore, A., 2009. Accuracy enhancement of unmanned helicopter positioning with low-cost system. Applied Geomatics, 1(3), pp.85-95.
  5. Dalponte, M., Bruzzone, L., Gianelle, D., Member, S., 2008. Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas. IEEE Transactions on Geoscience and Remote Sensing, 46(5), pp.1416-1427.
  6. Grenzdörffer, G., Engel, A., Teichert, B., 2008. The photogrammetric potential of low-cost UAVs in forestry and agriculture. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 1, pp.1207-1213. Available at: _pdf/206.pdf.
  7. Haarbrink, R., Eisenbeiss, H., 2008. Accurate DSM production from unmanned helicopter systems. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Vol. XXXVI, pp.1259-1264. Available at: http://www.isp
  8. Herwitz, S.R., Johnson, L.F., Dunagan, S.E., Higgins, R.G., Sullivan, D. V., Zheng, J., Lobitz, B.M., Leung, J.G., Gallmeyer, B. a., Aoyagi, M., Slye, R.E., Brass, J. a., 2004. Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44(1), pp.49-61.
  9. Honkavaara, E., Kaivosoja, J., Mäkynen, J., Pellikka, I., Pesonen, L., Saari, H., Salo, H., Hakala, T., Marklelin, L., Rosnell, T., 2012. Hyperspectral Reflectance Signatures and Point Clouds for Precision Agriculture By Light Weight UAV Imaging System. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-7(September), pp.353- 358.
  10. Hunt, E.R., Dean Hively, W., Fujikawa, S.J., Linden, D.S., Daughtry, C.S.T., McCarty, G.W., 2010. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing, 2(1), pp.290-305.
  11. Kruse, F. A., Lefkoff, A.B., Boardman, K.B. Shapiro, A.T., Barloon, P.J., Goetz, A.F.H., 1993. The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, 44, pp.145- 163. doi:10.1016/0034-4257(93)90013-N.
  12. Lelong, C.C.D., Burger, P., Jubelin, G., Roux, B., Labbé, S., Baret, F., 2008. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors, 8(5), pp.3557-3585.
  13. Lin, F.-C., Chung, L.-K., Ku, W.-Y., Chu, L.-R., Chou, T.-Y., 2013. The Framework of Cloud Computing Platform for Massive Remote Sensing Images. Advanced Information Networking and Applications (AINA), 2013 IEEE 27th International Conference on, pp.621-628. Available at: ls/icp.jsp?arnumber=6531812.
  14. Marsden, T., 2010. Mobilizing the regional eco-economy: evolving webs of agri-food and rural development in the UK. Cambridge Journal of Regions, Economy and Society, 3 (2 ), pp.225-244. Available at: http://cjres.
  15. Melgani, F. and Bruzzone, L., 2004. Classification of hyperspectral remote sensing images with support vector machines. Geoscience and Remote Sensing, IEEE Transactions on, 42(8), pp.1778-1790.
  16. Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F., 2013. Weed Mapping in EarlySeason Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images. PLoS ONE, 8(10), pp.1-11.
  17. Piragnolo, M., Pirotti, F., Vettore, A., Salogni, G., 2014a. ANTHROPIC RISK ASSESSMENT ON BIODIVERSITY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W3, pp.21-26. doi:10.5194/isprsarchives-XL-5-W3-21-2013.
  18. Piragnolo, M., Pirotti, F., Guarnieri, A., Vettore, A., Salogni, G., 2014b. Geo-Spatial Support for Assessment of Anthropic Impact on Biodiversity. ISPRS International Journal of Geo-Information, 3, pp.599-618. doi:10.3390/ijgi3020599.
  19. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D., 2011. UAV photgrammetry for mapping and 3D modeling current status and future perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII (September), pp.14- 16.
  20. Remondino, F., Pizzo, S. Del, 2012. Low-cost and opensource solutions for automated image orientation-a critical overview. Progress in Cultural Heritage Preservation, pp.40-54. Available at: http://link.spring
  21. Richards, J. A., Jia, X., 2006. Remote Sensing Digital Image Analysis: An Introduction. Berlin, Germany: Springer.
  22. Singh, S., Singh, N., 2012. Big Data analytics. 2012 International Conference on Communication, Information and Computing Technology (ICCICT), pp.1-4. Available at: /epic03/wrapper.htm?arnumber=6398180.
  23. Sona, G., Pinto, L., Pagliari, D., Passoni, D., Gini, R., 2014. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7(2), pp.97-107.
  24. Torres-Sánchez, J., Peña, J.M., de Castro, a. I., LópezGranados, F., 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103, pp.104-113.
  25. Van Asselen, Sanneke, and Peter H. Verburg. 2013. Land Cover Change or Land-Use Intensification: Simulating Land System Change with a Global-Scale Land Change Model. Global Change Biology, 19, pp.3648- 3667. doi:10.1111/gcb.12331.
  26. Van Eupen, M., Metzger, M.J., Pérez-Soba, M., Verburg, P.H., van Doorn, a., Bunce, R.G.H., 2012. A rural typology for strategic European policies. Land Use Policy, 29(3), pp.473-482. Available at:
  27. Zaslavsky, A., Perera, C., Georgakopoulos, D., 2013. Sensing as a Service and Big Data, in: arXiv Preprint arXiv:1301.0159. Bangalore.
  28. Zhao, W., Ma, H. and He, Q., 2009. Parallel K-Means Clustering Based on Map Reduce. Cloud Computing, 5931, pp.674-679. Available at: http://link.springe

Paper Citation

in Harvard Style

Piragnolo M. and Pirotti F. (2016). UAV Technology Integration for Remote Sensing Image Analysis . In Doctoral Consortium - DCGISTAM, (GISTAM 2016) ISBN , pages 12-19

in Bibtex Style

author={Marco Piragnolo and Francesco Pirotti},
title={UAV Technology Integration for Remote Sensing Image Analysis},
booktitle={Doctoral Consortium - DCGISTAM, (GISTAM 2016)},

in EndNote Style

JO - Doctoral Consortium - DCGISTAM, (GISTAM 2016)
TI - UAV Technology Integration for Remote Sensing Image Analysis
SN -
AU - Piragnolo M.
AU - Pirotti F.
PY - 2016
SP - 12
EP - 19
DO -