Symplectic Discretization Methods for Parameter Estimation of a Nonlinear Mechanical System using an Extended Kalman Filter

Daniel Beckmann, Matthias Dagen, Tobias Ortmaier

Abstract

This paper presents two symplectic discretization methods in the context of online parameter estimation for a nonlinear mechanical system. These symplectic approaches are compared to established discretization methods (e.g. Euler Forward and Runge Kutta) regarding accuracy and computational effort. In addition, the influence of the discretization method on the performance of an augmented Extended Kalman Filter (EKF) for parameter estimation is analyzed. The methods are compared with a nonlinear mechanical simulation model, based on a belt-drive system. The simulation shows improved accuracy using simplectic integrators in comparison to the conventional methods, with almost the same or lower computational cost. Parameter estimation based on the EKF in combination with the simplectic integration scheme leads to more accurate values.

References

  1. Auger, F., Hilairet, M., Guerrero, J. M., Monmasson, E., and Orlowska-Kowalska, T. (2013). Industrial applications of the Kalman filter: A review. IEEE Transactions on Industrial Electronics, 60:5458 - 5471.
  2. Beckmann, D., Schappler, M., Dagen, M., and Ortmaier, T. (2015). New approach using flatness-based control in high speed positioning: Experimental results. In IEEE International Conference on Industrial Technology (ICIT), Sevilla.
  3. Biagiotti, L. and Melchiorri, C. (2008). Trajectory Planning for Automatic Machines and Robotics. Springer.
  4. Bohlin, T. (2006). Practical Grey-box Process Identification. Springer.
  5. Bohn, C. (2000). Recursive Parameter Estimation for Nonlinear Continuous-Time Systems through SensitivityModel-Based Adaptive Filters. PhD thesis, Department of Electrical Engineering and Information Sciences, Ruhr-Universität Bochum.
  6. Grewal, M. and Andrews, A. (2008). Kalman Filtering: Theory and Practice Using MATLAB. Wiley.
  7. Hairer, E., Lubich, C., and Wanner, G. (2006). Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer.
  8. Ljung, L. (1979). Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Transactions on Automatic Control, 24(1):36-50.
  9. Nevaranta, N., Parkkinen, J., Lindh, T., Niemela, M., Pyrhonen, O., and Pyrhonen, J. (2015). Online estimation of linear tooth belt drive system parameters. IEEE Transactions on Industrial Electronics, 62(11):7214- 7223.
  10. Niiranen, J. (1999). Fast and accurate symmetric Euler algorithm for electromechanical simulations. In Proceedings of 6th. Int. Conf. Electrimacs, volume 1, pages 71 - 78, Lisboa, Portugal.
  11. O ltjen, J., Kotlarski, J., and Ortmaier, T. (2015). Reduction of end effector oscillations of a parallel mechanism with modified motion profiles. In Proceedings of IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), pages 823-829.
  12. Riva, M. H., Beckmann, D., Dagen, M., and Ortmaier, T. (2015). Online parameter and process covariance estimation using adaptive EKF and SRCuKF approaches. In IEEE Multi-Conference on Systems and Control (MSC 2015), Sydney, Australia.
  13. Schütte, F., Beineke, S., Rolfsmeier, A., and Grotstollen, H. (1997). Online identification of mechanical parameters using extended Kalman filter. In Proceedings of IEEE Annual Meeting of Industry Applications Society.
  14. Szabat, K. and Orlowska-Kowalska, T. (2012). Application of the Kalman Filters to the High-Performance Drive System With Elastic Coupling. IEEE Transactions on Industrial Electronics, 59(11):4226 - 4235.
  15. Welch, G. and Bishop, G. (2006). An introduction to the Kalman filter. Technical report, Chapel Hill, NC, USA.
Download


Paper Citation


in Harvard Style

Beckmann D., Dagen M. and Ortmaier T. (2016). Symplectic Discretization Methods for Parameter Estimation of a Nonlinear Mechanical System using an Extended Kalman Filter . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-198-4, pages 327-334. DOI: 10.5220/0005973503270334


in Bibtex Style

@conference{icinco16,
author={Daniel Beckmann and Matthias Dagen and Tobias Ortmaier},
title={Symplectic Discretization Methods for Parameter Estimation of a Nonlinear Mechanical System using an Extended Kalman Filter},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2016},
pages={327-334},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005973503270334},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Symplectic Discretization Methods for Parameter Estimation of a Nonlinear Mechanical System using an Extended Kalman Filter
SN - 978-989-758-198-4
AU - Beckmann D.
AU - Dagen M.
AU - Ortmaier T.
PY - 2016
SP - 327
EP - 334
DO - 10.5220/0005973503270334