An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example

Diana Serra, Aykut C. Satici, Fabio Ruggiero, Vincenzo Lippiello, Bruno Siciliano

Abstract

This paper presents an optimal trajectory planner for a robotic batting task . The specific case of a table tennis game performed by a robot is considered. Given an estimation of the trajectory of the ball during the free flight, the method addresses the determination of the paddle configuration (pose and velocity) to return the ball at a desired position with a desired spin. The implemented algorithm takes into account the hybrid dynamic model of the ball in free flight as well as the state transition at the impact (the reset map). An optimal trajectory that minimizes the acceleration functional is generated for the paddle to reach the desired impact position, velocity and orientation. Simulations of different case studies further bolster the approach along with a comparison with state-of-the-art methods.

References

  1. Acosta, L., Rodrigo, J., Mendez, J., Marichal, G. N., and Sigut, M. (2003). Ping-pong player prototype. IEEE Robotics & Automation Magazine, 10(4):44-52.
  2. Andersson, R. (1989a). Aggressive trajectory generator for a robot ping-pong player. IEEE Control Systems Magazine, 9(2):15-21.
  3. Andersson, R. (1989b). Dynamic sensing in a ping-pong playing robot. IEEE Transactions on Robotics and Automation, 5(6):728-739.
  4. Cigliano, P., Lippiello, V., Ruggiero, F., and Siciliano, B. (2015). Robotic ball catching with an eye-in-hand single-camera system. IEEE Transactions on Control Systems Technology, 23(5):1657-1671.
  5. do Carmo, M. (1992). Riemannian Geometry. Mathematics (Boston, Mass.). Birkhäuser.
  6. Huang, Y., Xu, D., Tan, M., and Su, H. (2013). Adding active learning to LWR for ping-pong playing robot. IEEE Transactions on Control Systems Technology, 21(4):1489-1494.
  7. Kuka (2014). The Duel: Timo Boll vs. KUKA Robot. [web page] https://youtu.be/tIIJME8-au8+.
  8. Lippiello, V. and Ruggiero, F. (2012). 3D monocular robotic ball catching with an iterative trajectory estimation refinement. InIEEE International Conference on Robotics and Automation, pages 3950-3955, Saint Paul, MN, USA.
  9. Liu, C., Hayakawa, Y., and Nakashima, A. (2012). Racket control and its experiments for robot playing table tennis. In IEEE International Conference on Robotics and Biomimetics, pages 241-246, Guangzhou, CN.
  10. Lourakis, M. (Jul. 2004). levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. [web page] http://www.ics.forth.gr/ lourakis/levmar/+. [Accessed on 31 Jan. 2005.].
  11. Lynch, K. and Mason, M. (1999). Dynamic nonprehensile manipulation: Controllability, planning, and experiments. The International Journal of Robotics Research, 18(64):64-92.
  12. Matsushima, M., Hashimoto, T., Takeuchi, M., and Miyazaki, F. (2005). A learning approach to robotic table tennis. IEEE Transactions on Robotics, 21(4):767-771.
  13. Müller, M., Lupashin, S., and D'Andrea, R. (2011). Quadrocopter ball juggling. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5113-5120, San Francisco, CA, USA.
  14. Mülling, K., Kober, J., Kroemer, O., and Peters, J. (2013). Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 32(3):263-279.
  15. Mülling, K., Kober, J., and Peters, J. (2010). A biomimetic approach to robot table tennis. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1921-1926, Taipei, TW.
  16. Nakashima, A., Ito, D., and Hayakawa, Y. (2014). An online trajectory planning of struck ball with spin by table tennis robot. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 865-870, Besanc¸on, F.
  17. Nakashima, A., Ogawa, Y., Kobayashi, Y., and Hayakawa, Y. (2010). Modeling of rebound phenomenon of a rigid ball with friction and elastic effects. In IEEE American Control Conference, pages 1410- 1415, Baltimore, MD, USA.
  18. Nonomura, J., Nakashima, A., and Hayakawa, Y. (2010). Analysis of effects of rebounds and aerodynamics for trajectory of table tennis ball. In IEEE Society of Instrument and Control Engineers Conference, pages 1567-1572, Taipei, TW.
  19. Omron (2015). CEATEC 2015: Omron's Ping Pong Robot. [web page] https://youtu.be/6MRxwPHH0Fc+.
  20. Oubbati, F., Richter, M., and Schoner, G. (2013). Autonomous robot hitting task using dynamical system approach. In IEEE International Conference on Systems, Man, and Cybernetics, pages 4042-4047, Manchester, UK.
  21. Senoo, T., Namiki, A., and Ishikawa, M. (2006). Ball control in high-speed batting motion using hybrid trajectory generator. In IEEE International Conference on Robotics and Automation, pages 1762-1767, Orlando, FL, USA.
  22. Serra, D., Satici, A. C., Ruggiero, F., Lippiello, V., and Siciliano, B. (2016). An optimal trajectory planner for a robotic batting task: The table tennis example. [web page] https://youtu.be/GXtBvbUHu5s+.
  23. Silva, R., Melo, F., and Veloso, M. (2015). Towards table tennis with a quadrotor autonomous learning robot and onboard vision. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 649- 655, Hamburg, D.
  24. Wei, D., Guo-Ying, G., Ye, D., Xiangyang, Z., and Han, D. (2015). Ball juggling with an under-actuated flying robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 68-73, Hamburg, D.
  25. Yanlong, H., Bernhard, S., and Jan, P. (2015). Learning optimal striking points for a ping-pong playing robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4587-4592, Hamburg, D.
  26. Zefran, M., Kumar, V., and Croke, C. (1998). On the generation of smooth three-dimensional rigid body motions. IEEE Transactions on Robotics and Automation, 14(4):576-589.
  27. Zhang, Y., Xiong, R., Zhao, Y., and Chu, J. (2012). An adaptive trajectory prediction method for ping-pong robots. In Intelligent Robotics and Applications, pages 448-459. Springer.
Download


Paper Citation


in Harvard Style

Serra D., Satici A., Ruggiero F., Lippiello V. and Siciliano B. (2016). An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 90-101. DOI: 10.5220/0005982000900101


in Bibtex Style

@conference{icinco16,
author={Diana Serra and Aykut C. Satici and Fabio Ruggiero and Vincenzo Lippiello and Bruno Siciliano},
title={An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={90-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005982000900101},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example
SN - 978-989-758-198-4
AU - Serra D.
AU - Satici A.
AU - Ruggiero F.
AU - Lippiello V.
AU - Siciliano B.
PY - 2016
SP - 90
EP - 101
DO - 10.5220/0005982000900101