Integrated Object Segmentation and Tracking for 3D LIDAR Data

Mehmet Ali Çağrı Tuncer, Dirk Schulz

Abstract

This paper proposes a novel method for integrated tracking and segmentation of 3D Light Detection and Ranging (LIDAR) data. The conventional processing pipeline of object tracking methods performs the segmentation and tracking modules consecutively. They apply a connected component algorithm on a grid for object segmentation. This results in an under-segmentation and in turn wrong tracking estimates when there are spatially close objects. We present a new approach in which segmentation and tracking modules profit from each other to resolve ambiguities in complex dynamic scenes. A non-parametric Bayesian method, the sequential distance dependent Chinese Restaurant Process (s-ddCRP), enables us to combine segmentation and tracking components. After a pre-processing step which maps measurements to a grid representation, the proposed method tracks each grid cell and segments the environment in an integrated way. A smoothing algorithm is applied to the estimated grid cell velocities for better motion consistency of neighboring dynamic grid cells. Experiments on data obtained with a Velodyne HDL64 scanner in real traffic scenarios illustrate that the proposed approach has a encouraging detection performance and conclusive motion consistency between consecutive time frames.

References

  1. Alparone, L., Barni, M., Bartolini, F., and Cappellini, V. (1996). Adaptively weighted vector-median filters for motion-fields smoothing. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on, volume 4, pages 2267-2270. IEEE.
  2. Azim, A. and Aycard, O. (2012). Detection, classification and tracking of moving objects in a 3d environment. In Intelligent Vehicles Symposium (IV), 2012 IEEE, pages 802-807. IEEE.
  3. Bar-Shalom, Y. (1987). Tracking and data association. Academic Press Professional, Inc.
  4. Blei, D. M. and Frazier, P. I. (2011). Distance dependent chinese restaurant processes. The Journal of Machine Learning Research, 12:2461-2488.
  5. Choi, J., Ulbrich, S., Lichte, B., and Maurer, M. (2013). Multi-target tracking using a 3d-lidar sensor for autonomous vehicles. In Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on, pages 881-886. IEEE.
  6. Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., and Frenkel, A. (2011). On the segmentation of 3d lidar point clouds. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 2798-2805.
  7. Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR).
  8. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian data analysis. Chapman and Hall/CRC Texts in Statistical Science.
  9. Li, Q., Zhang, L., Mao, Q., Zou, Q., Zhang, P., Feng, S., and Ochieng, W. (2014). Motion field estimation for a dynamic scene using a 3d lidar. Sensors, 14(9):16672- 16691.
  10. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., et al. (2008). Junior: The stanford entry in the urban challenge. Journal of field Robotics, 25(9):569-597.
  11. Moosmann, F., Pink, O., and Stiller, C. (2009). Segmentation of 3d lidar data in non-flat urban environments using a local convexity criterion. In Intelligent Vehicles Symposium, 2009 IEEE, pages 215-220. IEEE.
  12. Morton, P., Douillard, B., and Underwood, J. (2011). An evaluation of dynamic object tracking with 3d lidar. In Proc. of the Australasian Conference on Robotics & Automation (ACRA).
  13. Petrovskaya, A. and Thrun, S. (2009). Model based vehicle detection and tracking for autonomous urban driving. Autonomous Robots, 26(2-3):123-139.
  14. Pitman, J. et al. (2002). Combinatorial stochastic processes. Technical Report 621, Dept. Statistics, UC Berkeley, 2002. Lecture notes for St. Flour course.
  15. Tuncer, M. A. C. and Schulz, D. (2015). Monte carlo based distance dependent chinese restaurant process for segmentation of 3d lidar data using motion and spatial features. In Information Fusion (Fusion), 2015 18th International Conference on, pages 112-118. IEEE.
  16. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8):425-466.
Download


Paper Citation


in Harvard Style

Tuncer M. and Schulz D. (2016). Integrated Object Segmentation and Tracking for 3D LIDAR Data . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 344-351. DOI: 10.5220/0005982103440351


in Bibtex Style

@conference{icinco16,
author={Mehmet Ali Çağrı Tuncer and Dirk Schulz},
title={Integrated Object Segmentation and Tracking for 3D LIDAR Data},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={344-351},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005982103440351},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Integrated Object Segmentation and Tracking for 3D LIDAR Data
SN - 978-989-758-198-4
AU - Tuncer M.
AU - Schulz D.
PY - 2016
SP - 344
EP - 351
DO - 10.5220/0005982103440351