Boosting an Embedded Relational Database Management System with Graphics Processing Units

Samuel Cremer, Michel Bagein, Saïd Mahmoudi, Pierre Manneback

Abstract

Concurrently, with the rise of Big Data systems, relational database management systems (RDBMS) are still widely exploited in servers, client devices, and even embedded inside end-user applications. In this paper, it is suggest to improve the performance of SQLite, the most deployed embedded RDBMS. The proposed solution, named CuDB, is an ”In-Memory” Database System (IMDB) which attempts to exploit specificities of modern CPU / GPU architectures. In this study massively parallel processing was combined with strategic data placement, closer to computing units. According to content and selectivity of queries, the measurements reveal an acceleration range between 5 to 120 times - with peak up to 411 - with one GPU GTX770 compared to SQLite standard implementation on a Core i7 CPU.

References

  1. Bakkum, P. and Skadron, K. (2010). Accelerating sql database operations on a gpu with cuda. In 3rd Workshop on GPGPU, pages 94-103, Pittsburgh, USA.
  2. Breß, S., Siegmund, N., Bellatreche, L., and Saake, G. (2013). An operator-stream-based scheduling engine for effective gpu coprocessing. ADBIS, 8133:288- 301.
  3. Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N., Luo, Q., and Sander, P. (2007). Gpuqp : query co-processing using graphics processors. In SIGMOD/PODS'07, pages 1061-1063, Beijing, China.
  4. GIS-Federal (2014). Gpudb - a distributed database for many-core devices. 54th HPC User Forum, Seattle.
  5. Govindaraju, N., Lloyd, B., Wang, W., Lin, M., and Manochad, D. (2004). Fast computation of database operations using graphics processors. In SIGMOD/PODS'04 international conference on Management of data, pages 215-216, Paris, France.
  6. Hagen, P., Schulz-Hildebrandt, O., and Luttenberger, N. (2010). Fast in-place sorting with cuda based on bitonic sort. Parallel Processing and Applied Mathematics, 6067:403-410.
  7. He, B. and Xu Yu, J. (2011). High-throughput transaction executions on graphics processors. VLDB Endowment, 8(5):314-325.
  8. Heimel, M., Saecker, M., Pirk, H., Manegold, S., and Markl, V. (2013). Hardware-oblivious parallelism for in-memory column-stores. PVLDB, 6(9):709-720.
  9. Huang, S., Xiao, S., and Feng, W. (2009). On the energy efficiency of graphics processing units for scientific computing. In IPDPS'09.
  10. Hummel, M. (2010). Parstream - a parallel database on gpus. GTC2010, San Jose, CA.
  11. Landaverde, R., Zhang, T., Coskun, A., and Herbordt, M. (2014). An investigation of unified memory access performance in cuda. In HPEC 2014, Waltham, MA.
  12. van den Braak, G., Mersman, B., and Corporaal, H. (2010). Compiletime gpu memory access optimizations. In ICSAMOS 2010, Samos, Greece.
  13. Yong, K., Karuppiah, E., and Chong-Wee See, S. (2014). Galactica: A gpu parallelized database accelerator. In 2014 International Conference on Big Data Science and Computing, Beijing, China.
  14. Yuan, Y., Lee, R., and Zhang, X. (2013). The yin and yang of processing data warehousing queries on gpu devices. VLDB Endowment, 6(10):817-828.
  15. Zhang, S., He, J., He, B., and Lu, M. (2013). Omnidb: towards portable and efficient query processing on parallel cpu/gpu architectures. VLDB Endowment, 6(12):1374-1377.
Download


Paper Citation


in Harvard Style

Cremer S., Bagein M., Mahmoudi S. and Manneback P. (2016). Boosting an Embedded Relational Database Management System with Graphics Processing Units . In Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1: DATA, ISBN 978-989-758-193-9, pages 170-175. DOI: 10.5220/0005995701700175


in Bibtex Style

@conference{data16,
author={Samuel Cremer and Michel Bagein and Saïd Mahmoudi and Pierre Manneback},
title={Boosting an Embedded Relational Database Management System with Graphics Processing Units},
booktitle={Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1: DATA,},
year={2016},
pages={170-175},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005995701700175},
isbn={978-989-758-193-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1: DATA,
TI - Boosting an Embedded Relational Database Management System with Graphics Processing Units
SN - 978-989-758-193-9
AU - Cremer S.
AU - Bagein M.
AU - Mahmoudi S.
AU - Manneback P.
PY - 2016
SP - 170
EP - 175
DO - 10.5220/0005995701700175