A Novel Strut-type Modular Robotic Structure using Rigid Node

Weibing Li, Robert Richardson, Jongrae Kim

Abstract

This paper proposes a novel way of constructing strut-type modular robotic structures to avoid some diffi- culties of designing and implementing ideal compliant nodes. Rigid nodes are employed to replace the ideal compliant nodes and to reduce the structural complexity while the feasibility of hardware implementation is dramatically improved. To release some kinematic constraints caused by the rigid nodes, we introduce robotic struts that consist of two prismatic actuators linked by a passive revolute joint. Physics-based robot models are constructed using a robot simulator. A scalable distributed control method is implemented using coupled central pattern generators. And, for comparison, the same control method is applied to conventional and the proposed strut-type modular robotic structures. Simulation results show that the proposed strut-type structures have several advantages over the conventional ones including less number of passive joints and shape-maintenance property.

References

  1. Baca, J., Hossain, S. G. M., Dasgupta, P., Nelson, C. A., and Dutta, A. (2014). ModRED: Hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extraterrestrial exploration. Robotics and Autonomous Systems, 62(7):1002-1015.
  2. Cheng, N., Ishigami, G., Hawthorne, S., Chen, H., Hansen, M., Telleria, M., Playter, R., and Iagnemma, K. (2010). Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 5207-5212.
  3. Curtis, S., Brandt, M., Bowers, G., Brown, G., Cheung, C., Cooperider, C., Desch, M., Desch, N., Dorband, J., Gregory, K., Lee, K., Lunsford, A., Minetto, F., Truszkowski, W., Wesenberg, R., Vranish, J., Abrahantes, M., Clark, P., Capon, T., Weaker, M., Watson, R., Olivier, P., and Rilee, M. L. (2007). Tetrahedral robotics for space exploration. In Proceedings of the IEEE Aerospace Conference, pages 1-9.
  4. Hamlin, G. J. and Sanderson, A. C. (1998). TETROBOT: A Modular Approach to Reconfigurable Parallel Robotics. Springer, New York.
  5. Kurokawa, H., Yoshida, E., Tomita, K., Kamimura, A., Murata, S., and Kokaji, S. (2006). Self-reconfigurable MTRAN structures and walker generation. Robotics and Autonomous Systems, 54(2):142-149.
  6. Lyder, A. (2010). Towards Versatile Robots Through Open Heterogeneous Modular Robots. PhD thesis, University of Southern Denmark.
  7. Østergaard, E. H., Kassow, K., Beck, R., and Lund, H. H. (2006). Design of the ATRON lattice-based selfreconfigurable robot. Autonomous Robots, 21(2):165- 183.
  8. Ramchurn, V., Richardson, R. C., and Nutter, P. (2006). ORTHO-BOT: A modular reconfigurable space robot concept. In Tokhi, M., Virk, G., and Hossain, M., editors, Climbing and Walking Robots, pages 659-666. Springer, Berlin Heidelberg.
  9. Salemi, B., Moll, M., and Shen, W.-M. (2006). SUPERBOT: A deployable, multi-functional, and modular self-reconfigurable robotic system. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3636-3641.
  10. Sato, T., Kano, T., and Ishiguro, A. (2011). On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot. Bioinspiration and Biomimetics, 6(2):026006.
  11. Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., and Ijspeert, A. J. (2014). Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robotics and Autonomous Systems, 62(7):1016-1033.
  12. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., and Chirikjian, G. S. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics Automation Magazine, 14(1):43-52.
  13. Yu, C.-H. (2010). Biologically-Inspired Control for SelfAdaptive Multiagent Systems. PhD thesis, Harvard University.
  14. Zagal, J. C., Armstrong, C., and Li, S. (2012). Deformable octahedron burrowing robot. In Adami, C., Bryson, D. M., Ofria, C., and Pennock, R. T., editors, Artificial Life 13, pages 431-438. MIT Press, Cambridge.
  15. Zhang, Y., Yim, M., Eldershaw, C., Duff, D., and Roufas, K. (2003). Scalable and reconfigurable configurations and locomotion gaits for chain-type modular reconfigurable robots. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pages 893-899.
Download


Paper Citation


in Harvard Style

Li W., Richardson R. and Kim J. (2016). A Novel Strut-type Modular Robotic Structure using Rigid Node . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-198-4, pages 261-268. DOI: 10.5220/0006004502610268


in Bibtex Style

@conference{icinco16,
author={Weibing Li and Robert Richardson and Jongrae Kim},
title={A Novel Strut-type Modular Robotic Structure using Rigid Node},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2016},
pages={261-268},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006004502610268},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A Novel Strut-type Modular Robotic Structure using Rigid Node
SN - 978-989-758-198-4
AU - Li W.
AU - Richardson R.
AU - Kim J.
PY - 2016
SP - 261
EP - 268
DO - 10.5220/0006004502610268