Urban Gamification as a Source of Information for Spatial Data Analysis and Predictive Participatory Modelling of a City’s Development

Robert Olszewski, Agnieszka Turek, Marcin Łączyński

Abstract

The basic problem in predictive participatory urban planning is activating residents of a city, e.g. through the application of the technique of individual and/or team gamification. The authors of the article developed (and tested in Płock) a methodology and prototype of an urban game called “Urban Shaper”. This permitted obtaining a vast collection of opinions of participants on the directions of potential development of the city. The opinions, however, are expressed in an indirect manner. Therefore, their analysis and modelling of participatory urban development requires the application of extended algorithms of spatial statistics. The collected source data are successively processed by means of spatial data mining techniques, permitting activation of condensed spatial knowledge based on “raw” source data with high volume (big data).

References

  1. Kapp, K. M., 2012. The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education.
  2. McGonigal J., 2011. Reality Is Broken: Why Games Make Us Better and How They Can Change the World.
  3. Zichermann G., 2013. The Gamification Revolution: How Leaders Leverage Game Mechanics to Crush the Competition.
  4. Alfrink, K. 2014. “The Gameful City.” in: The Gameful World, edited by Steffen P. Walz and Sebastian Deterding, 34. London, UK: MIT Press.
  5. Robson, K., Plangger, K., Kietzmann, J., McCarthy, I. & Pitt, L., 2015. "Is it all a game? Understanding the principles of gamification". Business Horizons 58 (4): 411-420.
  6. Bogost, I., 2010. Persuasive Games: The Expressive Power of Videogames, MIT Press.
  7. Opromolla, A., Ingrosso, A., Volpi, V., Medaglia, C. M., Palatucci, M., Mariarosaria Pazzola, M., 2015. Gamification in a Smart City Context. An Analysis and a Proposal for Its Application in Co-design Processes, Games and Learning Alliance, pp 73-82, Springer.
  8. Uskov, A., Sekar, B., 2015. Smart Gamification and Smart Serious Games, Fusion of Smart, Multimedia and Computer Gaming Technologies, pp 7-36, Springer.
  9. Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography, GeoJournal 69 (4): 211-221.
  10. Fiedukowicz, A., Kolodziej, A., Kowalski, P., Olszewski, R. 2013. Spoleczenstwo geoinformacyjne i przetwarzanie danych przestrzennych.” In: Rola bazy danych obiektów topograficznych w tworzeniu infrastruktury informacji przestrzennej w Polsce edited by Robert Olszewski and Dariusz Gotlib, 300-306. Glówny Urzad Geodezji i Kartografii, Warsaw.
  11. Cecchini, A., 2015. Beyond smart cities: Antifragile Planning for Antifragile City. Paper presented at the 15th International Conference on Computational Science and Its Applications (ICCSA 2015), Banff.
  12. Clark, A. 2009. Serious Games: Complete Guide to Simulations and Serious Games: How the Most Valuable Content Will be Created in the Age Beyond Gutenberg to Google. USA: John Wiley & Sons.
  13. Cabena, P., Hadjinian, P., Dtadler, R., Verhees J., Zanasi A., 1998. Discovering Data Mining: From Concept to Implementation, Prentice Hall, Upper Saddle River; Journal of Laws of 1995, No. 88, item 43, New York.
  14. Fayyad U., Piatetsky-Shapiro G., Smyth P., 1996a. From Data Mining to Knowledge Discovery in Databases, AI magazine, vol. 17, no 3, Association for the Advancement of Artificial Intelligence, s. 37-54.
  15. Gasiorowski J., Hajkowska M., Olszewski R., 2015. SpatioTemporal Modeling as a Tool of the Decision- Making System Supporting the Policy of Effective Usage of EU Funds in Poland, Springer International Publishing Switzerland 2015 O. Gervasi et al. (Eds.): ICCSA 2015, Part III, LNCS 9157, ss. 576-590.
  16. Han J., Kamber M., 2000. Data Mining: Concepts and Techniques, Morgan Kaufmann.
  17. Hand D., Mannila H., Smyth P., 2001. Principles of data mining, MIT Press, Cambridge.
  18. Kantardzic M., 2003. Data mining: Concepts, Models, Methods and Algorithms, John Wiley & Sons, NY.
  19. Miller H.J., Han L., 2001. Geographic Data Mining and Knowledge Discovery, Taylor & Francis, London.
  20. Nisbet R., Elder J., Miner G., 2009. Statistical Analysis and Data Mining Applications, Elsevier.
  21. Piatetsky-Shapiro G., Frawley W.J., 1991. Knowledge Discovery in Databases, AAAI/MIT Press.
  22. Witten I.H., Frank E., 2005. Data Mining, Morgan Kaufmann.
  23. Fiedukowicz A., Gasiorowski J., Olszewski R., 2015. Wybrane metody eksploracyjnej analizy danych przestrzennych (Spatial Data Mining), Wydzial Geodezji i Kartografii Politechniki Warszawskiej, Warszawa, ISBN 978-83-916104-1-1.
Download


Paper Citation


in Harvard Style

Olszewski R., Turek A. and Łączyński M. (2016). Urban Gamification as a Source of Information for Spatial Data Analysis and Predictive Participatory Modelling of a City’s Development . In Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1: DATA, ISBN 978-989-758-193-9, pages 176-181. DOI: 10.5220/0006005201760181


in Bibtex Style

@conference{data16,
author={Robert Olszewski and Agnieszka Turek and Marcin Łączyński},
title={Urban Gamification as a Source of Information for Spatial Data Analysis and Predictive Participatory Modelling of a City’s Development},
booktitle={Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1: DATA,},
year={2016},
pages={176-181},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006005201760181},
isbn={978-989-758-193-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Data Management Technologies and Applications - Volume 1: DATA,
TI - Urban Gamification as a Source of Information for Spatial Data Analysis and Predictive Participatory Modelling of a City’s Development
SN - 978-989-758-193-9
AU - Olszewski R.
AU - Turek A.
AU - Łączyński M.
PY - 2016
SP - 176
EP - 181
DO - 10.5220/0006005201760181