Human Tracking in Occlusion based on Reappearance Event Estimation

Hassan M. Nemati, Saeed Gholami Shahbandi, Björn Åstrand

Abstract

Relying on the commonsense knowledge that the trajectory of any physical entity in the spatio-temporal domain is continuous, we propose a heuristic data association technique. The technique is used in conjunction with an Extended Kalman Filter (EKF) for human tracking under occlusion. Our method is capable of tracking moving objects, maintain their state hypothesis even in the period of occlusion, and associate the target reappeared from occlusion with the existing hypothesis. The technique relies on the estimation of the reappearance event both in time and location, accompanied with an alert signal that would enable more intelligent behavior (e.g. in path planning). We implemented the proposed method, and evaluated its performance with real-world data. The result validates the expected capabilities, even in case of tracking multiple humans simultaneously.

References

  1. Almeida, A., Almeida, J., and Araújo, R. (2005). Realtime tracking of multiple moving objects using particle filters and probabilistic data association. AUTOMATIKA: c?asopis za automatiku, mjerenje, elektroniku, rac?unarstvo i komunikacije, 46(1-2):39-48.
  2. Arras, K. O., Grzonka, S., Luber, M., and Burgard, W. (2008). Efficient people tracking in laser range data using a multi-hypothesis leg-tracker with adaptive occlusion probabilities. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages 1710-1715. IEEE.
  3. Arras, K. O. and Mozos, O. M. (2009). People detection and tracking.
  4. Arras, K. O., Mozos, O. M., and Burgard, W. (2007). Using boosted features for the detection of people in 2D range data. In Robotics and Automation, 2007 IEEE International Conference on, pages 3402-3407. IEEE.
  5. Bräunl, T. (2008). Embedded robotics: mobile robot design and applications with embedded systems. Springer Science & Business Media.
  6. Carballo, A., Ohya, A., and Yuta, S. (2009). Multiple people detection from a mobile robot using double layered laser range finders. InICRA Workshop.
  7. Castro, D., Nunes, U., and Ruano, A. (2004). Feature extraction for moving objects tracking system in indoor environments. In Proc. 5th IFAC/euron Symposium on Intelligent Autonomous Vehicles. Citeseer.
  8. Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernelbased object tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(5):564-577.
  9. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886- 893. IEEE.
  10. Leigh, A., Pineau, J., Olmedo, N., and Zhang, H. (2015). Person tracking and following with 2D laser scanners. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 726-733. IEEE.
  11. Linder, T. and Arras, K. O. (2016). People detection, tracking and visualization using ROS on a mobile service robot. In Robot Operating System (ROS), pages 187- 213. Springer.
  12. Lovas, T. and Barsi, A. (2015). Pedestrian detection by profile laser scanning. In Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2015 International Conference on, pages 408-412. IEEE.
  13. Lucas, B. D., Kanade, T., et al. (1981). An iterative image registration technique with an application to stereo vision. In IJCAI, volume 81, pages 674-679.
  14. Mozos, O. M., Kurazume, R., and Hasegawa, T. (2010). Multi-part people detection using 2D range data. International Journal of Social Robotics, 2(1):31-40.
  15. Nemati, H. and A°strand, B. (2014). Tracking of people in paper mill warehouse using laser range sensor. In Modelling Symposium (EMS), 2014 European, pages 52-57. IEEE.
  16. Papageorgiou, C. and Poggio, T. (2000). A trainable system for object detection. International Journal of Computer Vision, 38(1):15-33.
  17. Premebida, C. and Nunes, U. (2005). Segmentation and geometric primitives extraction from 2D laser range data for mobile robot applications. Robotica, 2005:17-25.
  18. Rebai, K., Benabderrahmane, A., Azouaoui, O., and Ouadah, N. (2009). Moving obstacles detection and tracking with laser range finder. In Advanced Robotics, 2009. ICAR 2009. International Conference on, pages 1-6. IEEE.
  19. Schiele, B., Andriluka, M., Majer, N., Roth, S., and Wojek, C. (2009). Visual people detection: Different models, comparison and discussion. In IEEE International Conference on Robotics and Automation.
  20. Schulz, D., Burgard, W., Fox, D., and Cremers, A. B. (2001). Tracking multiple moving targets with a mobile robot using particle filters and statistical data association. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages 1665-1670. IEEE.
  21. Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT Press.
  22. Tuzel, O., Porikli, F., and Meer, P. (2007). Human detection via classification on riemannian manifolds. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1-8. IEEE.
  23. Wang, C.-C. and Thorpe, C. (2002). Simultaneous localization and mapping with detection and tracking of moving objects. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, volume 3, pages 2918-2924. IEEE.
  24. Welch, G. and Bishop, G. (2004). An introduction to the kalman filter. university of north carolina at chapel hill, department of computer science. Technical report, TR 95-041.
  25. Xavier, J., Pacheco, M., Castro, D., Ruano, A., and Nunes, U. (2005). Fast line, arc/circle and leg detection from laser scan data in a player driver. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 3930-3935. IEEE.
  26. Zitouni, M. S., Dias, J., Al-Mualla, M., and Bhaskar, H. (2015). Hierarchical crowd detection and representation for big data analytics in visual surveillance. In Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on, pages 1827-1832. IEEE.
  27. Zivkovic, Z. and Krose, B. (2007). Part based people detection using 2D range data and images. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 214-219. IEEE.
Download


Paper Citation


in Harvard Style

Nemati H., Shahbandi S. and Åstrand B. (2016). Human Tracking in Occlusion based on Reappearance Event Estimation . In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-198-4, pages 505-512. DOI: 10.5220/0006006805050512


in Bibtex Style

@conference{icinco16,
author={Hassan M. Nemati and Saeed Gholami Shahbandi and Björn Åstrand},
title={Human Tracking in Occlusion based on Reappearance Event Estimation},
booktitle={Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2016},
pages={505-512},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006006805050512},
isbn={978-989-758-198-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Human Tracking in Occlusion based on Reappearance Event Estimation
SN - 978-989-758-198-4
AU - Nemati H.
AU - Shahbandi S.
AU - Åstrand B.
PY - 2016
SP - 505
EP - 512
DO - 10.5220/0006006805050512