Modelling the Grid-like Encoding of Visual Space in Primates

Jochen Kerdels, Gabriele Peters

Abstract

Several regions of the mammalian brain contain neurons that exhibit grid-like firing patterns. The most prominent example of such neurons are grid cells in the entorhinal cortex (EC) whose activity correlates with the animal's location. Correspondingly, contemporary models of grid cells interpret this firing behavior as a specialized, functional part within a system for orientation and navigation. However, Killian et al. report on neurons in the primate EC that show similar, grid-like firing patterns but encode gaze-positions in the field of view instead of locations in the environment. We hypothesized that the phenomenon of grid-like firing patterns may not be restricted to navigational tasks and may be related to a more general, underlying information processing scheme. To explore this idea, we developed a grid cell model based on the recursive growing neural gas (RGNG) algorithm that expresses this notion. Here we show that our grid cell model can -- in contrast to established grid cell models -- also describe the observations of Killian et al. and we outline the general conditions under which we would expect neurons to exhibit grid-like activity patterns in response to input signals independent of a presumed, functional task of the neurons.

References

  1. Barry, C. and Burgess, N. (2014). Neural mechanisms of self-location. Current Biology, 24(8):R330 - R339.
  2. Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T., Witter, M. P., Moser, E. I., and Moser, M.-B. (2010). Grid cells in pre- and parasubiculum. Nat Neurosci, 13(8):987-994.
  3. Burak, Y. (2014). Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. Current Opinion in Neurobiology, 25(0):169 - 175. Theoretical and computational neuroscience.
  4. Domnisoru, C., Kinkhabwala, A. A., and Tank, D. W. (2013). Membrane potential dynamics of grid cells. Nature, 495(7440):199-204.
  5. Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in Neural Information Processing Systems 7, pages 625-632. MIT Press.
  6. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and Moser, M.-B. (2004). Spatial representation in the entorhinal cortex. Science, 305(5688):1258-1264.
  7. Giocomo, L., Moser, M.-B., and Moser, E. (2011). Computational models of grid cells. Neuron, 71(4):589 - 603.
  8. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052):801-806.
  9. Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., Suthana, N., Sperling, M. R., Sharan, A. D., Fried, I., and Kahana, M. J. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci, 16(9):1188-1190.
  10. Kerdels, J. and Peters, G. (2013). A computational model of grid cells based on dendritic self-organized learning. In Proceedings of the International Conference on Neural Computation Theory and Applications.
  11. Kerdels, J. and Peters, G. (2015a). Analysis of highdimensional data using local input space histograms. Neurocomputing, 169:272 - 280.
  12. Kerdels, J. and Peters, G. (2015b). A new view on grid cells beyond the cognitive map hypothesis. In 8th Conference on Artificial General Intelligence (AGI 2015) .
  13. Killian, N. J., Jutras, M. J., and Buffalo, E. A. (2012). A map of visual space in the primate entorhinal cortex. Nature, 491(7426):761-764.
  14. Martinetz, T. M. and Schulten, K. (1994). Topology representing networks. Neural Networks, 7:507-522.
  15. Moser, E. I. and Moser, M.-B. (2008). A metric for space. Hippocampus, 18(12):1142-1156.
  16. Moser, E. I., Moser, M.-B., and Roudi, Y. (2014). Network mechanisms of grid cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635).
  17. Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M.-B., and Moser, E. I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774):758-762.
  18. Welinder, P. E., Burak, Y., and Fiete, I. R. (2008). Grid cells: The position code, neural network models of activity, and the problem of learning. Hippocampus, 18(12):1283-1300.
  19. Yartsev, M. M., Witter, M. P., and Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479(7371):103-107.
Download


Paper Citation


in Harvard Style

Kerdels J. and Peters G. (2016). Modelling the Grid-like Encoding of Visual Space in Primates . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 42-49. DOI: 10.5220/0006045500420049


in Bibtex Style

@conference{ncta16,
author={Jochen Kerdels and Gabriele Peters},
title={Modelling the Grid-like Encoding of Visual Space in Primates},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (IJCCI 2016)},
year={2016},
pages={42-49},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006045500420049},
isbn={978-989-758-201-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (IJCCI 2016)
TI - Modelling the Grid-like Encoding of Visual Space in Primates
SN - 978-989-758-201-1
AU - Kerdels J.
AU - Peters G.
PY - 2016
SP - 42
EP - 49
DO - 10.5220/0006045500420049