Evolving Art using Aesthetic Analogies - Evolutionary Supervised Learning to Generate Art with Grammatical Evolution

Aidan Breen, Colm O'Riordan

Abstract

In this paper we describe an evolutionary approach using models of human aesthetic experience to evolve expressions capable of generating real-time aesthetic analogies between two different artistic domains. We outline a conceptual structure used to define aesthetic analogies and guide the collection of empirical data used to build aesthetic models. We also present a Grammatical Evolution based system making use of aesthetic models with a heuristic based fitness calculation approach to evaluate evolved expressions. We demonstrate a working model that has been designed to implement this system and use the evolved expressions to generate real-time aesthetic analogies with input music and output visuals. With this system we can generate novel artistic visual displays, similar to a light show at a music concert, which can react to the musician's performance in real-time.

References

  1. Bergen, S. and Ross, B. J. (2013). Aesthetic 3D model evolution. Genetic Programming and Evolvable Machines, 14(3):339-367.
  2. Birkhoff, G. (1933). Aesthetic Measure. Cambridge University Press.
  3. Boden, M. A. and Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20(1-2):21-46.
  4. Breen, A. and O'Riordan, C. (2015). Capturing and Ranking Perspectives on the Consonance and Dissonance of Dyads. In Sound and Music Computing Conference, pages 125-132, Maynooth.
  5. Cameld, W. A. (1990). Marcel Duchamp's fountain: Its history and aesthetics in the context of 1917. Marcel Duchamp: Artist of the century.
  6. Chuang, M.-C. and Ou, L.-C. (2001). Influence of a holistic color interval on color harmony. COLOR research and application, 26(1):29-39.
  7. Cockos (2016). Reaper.
  8. den Heijer, E. and Eiben, A. E. (2010). Comparing aesthetic measures for evolutionary art. In Applications of Evolutionary Computation, pages 311-320. Springer.
  9. den Heijer, E. and Eiben, A. E. (2011). Evolving art using multiple aesthetic measures. In Applications of Evolutionary Computation, pages 234-243. Springer.
  10. Eigenfeldt, A. (2009). The evolution of evolutionary software: intelligent rhythm generation in Kinetic Engine. In Applications of Evolutionary Computing, pages 498-507. Springer.
  11. Fox, R. and Crawford, R. (2016). A Hybrid Approach to Automated Music Composition. In Artificial Intelligence Perspectives in Intelligent Systems, pages 213- 223. Springer.
  12. French, R. M. (2002). The computational modeling of analogy-making. Trends in cognitive sciences, 6(5):200-205.
  13. Garca-Sánchez, P., Merelo, J. J., Calandria, D., Pelegrina, A. B., Morcillo, R., Palacio, F., and Garca-Ortega, R. H. (2013). Testing the Differences of Using RGB and HSV Histograms During Evolution in Evolutionary Art. ECTA.
  14. Gentner, D. and Forbus, K. D. (2011). Computational models of analogy. Wiley Interdisciplinary Reviews: Cognitive Science, 2(3):266-276.
  15. Goguen, J. A. (1999). Art and the Brain: Editorial introduction. Journal of Consciousness Studies, 6(6):5-14.
  16. Hagendoorn, I. (2003). The dancing brain. Cerebrum: The Dana Forum on Brain Science, 5(2):19-34.
  17. Hall, R. P. (1989). Computational Approaches to Analogical Reasoning : A Comparative Analysis. Artificial Intelligence, pages 39-120.
  18. Heidarpour, M. and Hoseini, S. M. (2015). Generating art tile patterns using genetic algorithm. In Fuzzy and Intelligent Systems (CFIS), 2015 4th Iranian Joint Congress on, pages 1-4. IEEE.
  19. Huang, M. (2009). The Neuroscience of Art. Stanford Journal of Neuroscience, 2(1):24-26.
  20. Hutchinson, W. and Knopoff, L. (1978). The acoustic component of Western consonance. Journal of New Music Research, 7(1):1-29.
  21. Kameoka, A. and Kuriyagawa, M. (1969). Consonance theory part I: Consonance of dyads. The Journal of the Acoustical Society of America, 45(6):1451-1459.
  22. Kandinsky, W. and Rebay, H. (1947). Point and line to plane. Courier Corporation.
  23. Klee, P. (1925). Pedagogical Sketchbook. Praeger Publishers, Washington.
  24. Magritte, R. (1928). The Treachery of Images. Oil on canvas, 231(2):1928-1929.
  25. Malmberg, C. F. (1918). The perception of consonance and dissonance. Psychological Monographs, 25(2):93- 133.
  26. O'Neil, M. and Ryan, C. (2003). Grammatical evolution. In Grammatical Evolution, pages 33-47. Springer.
  27. Palmer, S. E., Schloss, K. B., and Sammartino, J. (2013). Visual aesthetics and human preference. Annual review of psychology, 64:77-107.
  28. Plomp, R. and Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. The journal of the Acoustical Society of America, 38(4):548-560.
  29. Ramachandran, V. S. and Hirstein, W. (1999). The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies, 6(6):15-35.
  30. Schloss, K. B. and Palmer, S. E. (2011). Aesthetic response to color combinations: preference, harmony, and similarity. Attention, Perception, & Psychophysics, 73(2):551-571.
  31. Snibbe, S. S. and Levin, G. (2000). Interactive dynamic abstraction. In Proceedings of the 1st international symposium on Non-photorealistic animation and rendering, pages 21-29. ACM.
  32. Szabó, F., Bodrogi, P., and Schanda, J. (2010). Experimental modeling of colour harmony. Color Research & Application, 35(1):34-49.
  33. Todd, P. M. and Werner, G. M. (1999). Frankensteinian methods for evolutionary music. Musical networks: parallel distributed perception and performace, page 313.
  34. Vassilakis, P. N. (2005). Auditory roughness as means of musical expression. Selected Reports in Ethnomusicology, 12:119-144.
  35. Von Helmholtz, H. (1912). On the Sensations of Tone as a Physiological Basis for the Theory of Music. Longmans, Green.
  36. Yang, W., Cheng, Y., He, J., Hu, W., and Lin, X. (2016). Research on Community Competition and Adaptive Genetic Algorithm for Automatic Generation of Tang Poetry. Mathematical Problems in Engineering, 2016.
Download


Paper Citation


in Harvard Style

Breen A. and O'Riordan C. (2016). Evolving Art using Aesthetic Analogies - Evolutionary Supervised Learning to Generate Art with Grammatical Evolution . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 59-68. DOI: 10.5220/0006048400590068


in Bibtex Style

@conference{ecta16,
author={Aidan Breen and Colm O'Riordan},
title={Evolving Art using Aesthetic Analogies - Evolutionary Supervised Learning to Generate Art with Grammatical Evolution},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)},
year={2016},
pages={59-68},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006048400590068},
isbn={978-989-758-201-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)
TI - Evolving Art using Aesthetic Analogies - Evolutionary Supervised Learning to Generate Art with Grammatical Evolution
SN - 978-989-758-201-1
AU - Breen A.
AU - O'Riordan C.
PY - 2016
SP - 59
EP - 68
DO - 10.5220/0006048400590068