Evolution of Cooperation in N-player Social Dilemmas: The Importance of being Mobile

Maud D. Gibbons, Colm O'Riordan, Josephine Griffith

2016

Abstract

This paper addresses issues regarding the emergence of cooperation in evolutionary, spatial game theoretic simulations. In the model considered, agents participate in a social dilemma with their neighbours and have the ability to move in response to environmental stimuli. Both the movement strategies and the game strategies (whether to cooperate or not) are evolved. In particular, we present results that compare the outcomes using the classical two player prisoner's dilemma and a generalised N-player prisoner's dilemma. We also explore the effect that agent density (the number of agents present per cell in the world) has on the evolution of cooperation in the environment. Finally, we discuss the movement strategies that are evolved for both cooperative and non-cooperative strategies.

References

  1. Aktipis, C. A. (2004). Know when to walk away: Contingent movement and the evolution of cooperation. Journal of Theoretical Biology, 231(2):249-260.
  2. Antonioni, A., Tomassini, M., and Buesser, P. (2014). Random diffusion and cooperation in continuous twodimensional space. Journal of theoretical biology, 344:40-48.
  3. Axelrod, R. and Dion, D. (1988). The further evolution of cooperation. Science, 242:1385-1390.
  4. Axelrod, R. M. (1984). The Evolution of Cooperation. Basic Books.
  5. Boyd, R. and Richerson, P. J. (1988). The evolution of reciprocity in sizable groups. Journal of theoretical Biology, 132(3):337-356.
  6. Chiong, R. and Kirley, M. (2012). Random mobility and the evolution of cooperation in spatial N-player iterated Prisoners Dilemma games. Physica A: Statistical Mechanics and its Applications, 391(15):3915-3923.
  7. Enquist, M. and Leimar, O. (1993). The evolution of cooperation in mobile organisms. Animal Behaviour, 45(4):747-757.
  8. Gibbons, M. and O'Riordan, C. (2014). Evolution of coordinated behaviour in artificial life simulations. In Proceedings of the International Conference on Theory and Practice in Modern Computing.
  9. Gibbons, M. D., O'Riordan, C., and Griffith, J. (2016). Follow flee: A contingent mobility strategy for the spatial prisoners dilemma. In International Conference on Simulation of Adaptive Behavior, pages 34- 45. Springer.
  10. Helbing, D. and Yu, W. (2008). Migration as a mechanism to promote cooperation. Advances in Complex Systems, 11(4):641-652.
  11. Helbing, D. and Yu, W. (2009). The outbreak of cooperation among success-driven individuals under noisy conditions. Proceedings of the National Academy of Sciences of the United States of America, 106(10):3680- 3685.
  12. Ichinose, G., Saito, M., and Suzuki, S. (2013). Collective Chasing Behavior between Cooperators and Defectors in the Spatial Prisoner's Dilemma. PLoS ONE, 8(7):28-31.
  13. Jiang, L.-L., Wang, W.-X., Lai, Y.-C., and Wang, B.-H. (2010). Role of adaptive migration in promoting cooperation in spatial games. Physical Review E, 81(3):036108.
  14. Joyce, D., Kennison, J., Densmore, O., Guerin, S., Barr, S., Charles, E., and Thompson, N. S. (2006). My way or the highway: a more naturalistic model of altruism tested in an iterative prisoners' dilemma. Journal of Artificial Societies and Social Simulation, 9(2):4.
  15. Lieberman, E., Hauert, C., and Nowak, M. A. (2005). Evolutionary dynamics on graphs. Nature, 433(7023):312-316.
  16. Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge University Press, Cambridge; New York.
  17. Meloni, S., Buscarino, A., Fortuna, L., Frasca, M., GómezGarden˜es, J., Latora, V., and Moreno, Y. (2009). Effects of mobility in a population of prisoner's dilemma players. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(6):3-6.
  18. Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805):1560-3.
  19. Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359(6398):826-829.
  20. Ohtsuki, H., Hauert, C., Lieberman, E., and Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441(7092):502-505.
  21. O'Riordan, C. and Sorensen, H. (2008). Stable cooperation in the N-player prisoners dilemma: The importance of community structure. In Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning, pages 157-168. Springer.
  22. Poncela, J., Gómez-Garden˜es, J., Floría, L. M., Moreno, Y., and Sánchez, A. (2009). Cooperative scale-free networks despite the presence of defector hubs. EPL (Europhysics Letters), 88(3):38003.
  23. Santos, F., Rodrigues, J., and Pacheco, J. (2006). Graph topology plays a determinant role in the evolution of cooperation. Proceedings of the Royal Society B: Biological Sciences, 273(1582):51-55.
  24. Sicardi, E. A., Fort, H., Vainstein, M. H., and Arenzon, J. J. (2009). Random mobility and spatial structure often enhance cooperation. Journal of theoretical biology, 256(2):240-246.
  25. Suarez, D., Suthaharan, P., Rowell, J., and Rychtar, J. (2015). Evolution of cooperation in mobile populations. Spora-A Journal of Biomathematics, 1(1):2-7.
  26. Suzuki, R. and Arita, T. (2003). Evolutionary analysis on spatial locality in n-person iterated prisoner's dilemma. International Journal of Computational Intelligence and Applications, 3(02):177-188.
  27. Szolnoki, A., Perc, M., Szabó, G., and Stark, H.-U. (2009). Impact of aging on the evolution of cooperation in the spatial prisoners dilemma game. Physical Review E, 80(2):021901.
  28. Tomassini, M. and Antonioni, A. (2015). Lévy flights and cooperation among mobile individuals. Journal of theoretical biology, 364:154-161.
  29. Vainstein, M. H., Silva, A. T. C., and Arenzon, J. J. (2007). Does mobility decrease cooperation? Journal of Theoretical Biology, 244(4):722-728.
  30. Yang, H.-X., Wu, Z.-X., and Wang, B.-H. (2010). Role of aspiration-induced migration in cooperation. Physical Review E, 81(6):065101.
  31. Yao, X. and Darwen, P. J. (1994). An experimental study of N-person iterated prisoners dilemma games. Informatica, 18(4):435-450.
Download


Paper Citation


in Harvard Style

D. Gibbons M., O'Riordan C. and Griffith J. (2016). Evolution of Cooperation in N-player Social Dilemmas: The Importance of being Mobile . In Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 78-85. DOI: 10.5220/0006052700780085


in Bibtex Style

@conference{ecta16,
author={Maud D. Gibbons and Colm O'Riordan and Josephine Griffith},
title={Evolution of Cooperation in N-player Social Dilemmas: The Importance of being Mobile},
booktitle={Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)},
year={2016},
pages={78-85},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006052700780085},
isbn={978-989-758-201-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2016)
TI - Evolution of Cooperation in N-player Social Dilemmas: The Importance of being Mobile
SN - 978-989-758-201-1
AU - D. Gibbons M.
AU - O'Riordan C.
AU - Griffith J.
PY - 2016
SP - 78
EP - 85
DO - 10.5220/0006052700780085