Automatic Text Summarization by Non-topic Relevance Estimation

Ignacio Arroyo-Fernández, Juan-Manuel Torres-Moreno, Gerardo Sierra, Luis Adrián Cabrera-Diego

Abstract

We investigate a novel framework for Automatic Text Summarization. In this framework underlying language-use features are learned from a minimal sample corpus. We argue the low complexity of this kind of features allows relying in generalization ability of a learning machine, rather than in diverse human-abstracted summaries. In this way, our method reliably estimates a relevance measure for predicting summary candidature scores, regardless topics in unseen documents. Our output summaries are comparable to the state-of-the-art. Thus we show that in order to extract meaning summaries, it is not crucial what is being said; but rather how it is being said.

References

  1. Arroyo-Fernández, I. (2015). Learning kernels for semantic clustering: A deep approach. In NAACL-HLT 2015 Student Research Workshop (SRW), pages 79-87.
  2. Berg-Kirkpatrick, T., Gillick, D., and Klein, D. (2011). Jointly learning to extract and compress. In 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pages 481-490. Association for Computational Linguistics.
  3. Cabrera-Diego, L. A., Torres-Moreno, J.-M., and Durette, B. (2016). Evaluating multiple summaries without human models: a first experiment with a trivergent model. In Métais, E., Meziane, F., Saraee, M., Sugumaran, V., and Vadera, S., editors, Proceedings of the 21st International conference on the Application of Natural Language to Information Systems, pages 91-101. NLDB.
  4. Cao, Z., Wei, F., Dong, L., Li, S., and Zhou, M. (2015). Ranking with recursive neural networks and its application to multi-document summarization. In AAAI, pages 2153-2159.
  5. Cortes, C. (1995). Prediction of Generalization Ability in Learning Machines. PhD thesis, University of Rochester.
  6. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273-297.
  7. Divya, S. and Reghuraj, P. (2014). Eigenvector based approach for sentence ranking in news summarization. IJCLNLP, April.
  8. Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying relations for open information extraction. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1535-1545. Association for Computational Linguistics.
  9. Galanis, D., Lampouras, G., and Androutsopoulos, I. (2012). Extractive multi-document summarization with integer linear programming and support vector regression. In COLING, pages 911-926.
  10. Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., and Sriperumbudur, B. K. (2012). Optimal kernel choice for large-scale two-sample tests. In Advances in neural information processing systems, pages 1205-1213.
  11. Gutman, J. and Nam, R. (2015). Text classification of reddit posts. Technical report, New York University.
  12. Harris, Z. S. (1968). Mathematical Structures of Language. Wiley, New York, NY, USA.
  13. Hong, K. and Nenkova, A. (2014). Improving the estimation of word importance for news multi-document summarization. In EACL, pages 712-721.
  14. Ji, H., Favre, B., Lin, W.-P., Gillick, D., Hakkani-Tur, D., and Grishman, R. (2013). Open-domain multidocument summarization via information extraction: Challenges and prospects. In Multi-source, Multilingual Information Extraction and Summarization, pages 177-201. Springer.
  15. Kupiec, J., Pedersen, J., and Chen, F. (1995). A trainable document summarizer. In 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 68-73. ACM.
  16. Landauer, T. K., Foltz, P. W., and Laham, D. (1998). An introduction to latent semantic analysis. Discourse processes, 25(2-3):259-284.
  17. Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents. In 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 1188-1196.
  18. Lee, J.-H., Park, S., Ahn, C.-M., and Kim, D. (2009). Automatic generic document summarization based on nonnegative matrix factorization. Information Processing & Management, 45(1):20-34.
  19. Li, C., Liu, F., Weng, F., and Liu, Y. (2013). Document summarization via guided sentence compression. In EMNLP, pages 490-500.
  20. Li, J., Li, J., Fu, X., Masud, M., and Huang, J. Z. (2016). Learning distributed word representation with multicontextual mixed embedding. Knowledge-Based Systems.
  21. Li, S., Ouyang, Y., Wang, W., and Sun, B. (2007). Multidocument summarization using support vector regression. In Proceedings of DUC.
  22. Li, W. (2015). Abstractive multi-document summarization with semantic information extraction. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1908-1913.
  23. Liang, H., Fothergill, R., and Baldwin, T. (2015). Rosemerry: A baseline message-level sentiment classification system. SemEval-2015, page 551.
  24. Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Moens, M.-F. and Szpakowicz, S., editors, Workshop Text Summarization Branches Out (ACL'04), pages 74-81, Barcelona, Spain. ACL.
  25. Louis, A. and Nenkova, A. (2009). Automatically evaluating content selection in summarization without human models. In Conference on Empirical Methods in Natural Language Processing, pages 306-314, Singapore. ACL.
  26. Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research and Development, 2(2):159-165.
  27. McDonald, R. (2007). A study of global inference algorithms in multi-document summarization. Springer.
  28. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
  29. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, pages 3111- 3119.
  30. Min, Z. L., Chew, Y. K., and Tan, L. (2012). Exploiting category-specific information for multi-document summarization. In COLING. ACL.
  31. Nenkova, A. (2005). Automatic text summarization of newswire: Lessons learned from the document understanding conference. In AAAI, volume 5, pages 1436- 1441.
  32. Nenkova, A., Passonneau, R., and McKeown, K. (2007). The pyramid method: Incorporating human content selection variation in summarization evaluation. ACM Transactions on Speech Language Processing, 4(2):1-23.
  33. Nenkova, A. and Passonneau, R. J. (2004). Evaluating content selection in summarization: The pyramid method. In Conference of the North American Chapter of the Association for Computational Linguistics (HLTNAACL'04), pages 145-152, Boston, MA, USA.
  34. Nyquist, H. (1924). Certain factors affecting telegraph speed. Bell System technical journal, 3(2):324-346.
  35. Saggion, H., Torres-Moreno, J.-M., da Cunha, I., and SanJuan, E. (2010). Multilingual summarization evaluation without human models. In 23rd International Conference on Computational Linguistics (COLING'10), pages 1059-1067, Beijing, China. ACL.
  36. Sarkar, K. (2009). Sentence clustering-based summarization of multiple text documents. International Journal of Computing Science and Communication Technologies, 2(1):325-335.
  37. Schölkopf, B., Bartlett, P., Smola, A., and Williamson, R. (1998). Support vector regression with automatic accuracy control. In ICANN 98, pages 111-116. Springer.
  38. Shannon, C. E. (1949). Communication theory of secrecy systems*. Bell system technical journal, 28(4):656- 715.
  39. Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge UP. ISBN: 978- 0-521-81397-6.
  40. Torres-Moreno, J.-M. (2012). Artex is another text summarizer. CoRR, abs/1210.3312.
  41. Torres-Moreno, J.-M. (2014). Automatic text summarization. John Wiley & Sons.
  42. Vapnik, V. N. (1998). Statistical learning theory. Wiley New York.
  43. Wan, X. and Yang, J. (2008). Multi-document summarization using cluster-based link analysis. In 31st annual international ACM SIGIR Conference on Research and Development in Information Retrieval, pages 299-306. ACM.
  44. Woodsend, K. and Lapata, M. (2012). Multiple aspect summarization using integer linear programming. In 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 233-243. Association for Computational Linguistics.
Download


Paper Citation


in Harvard Style

Arroyo-Fernández I., Torres-Moreno J., Sierra G. and Cabrera-Diego L. (2016). Automatic Text Summarization by Non-topic Relevance Estimation . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016) ISBN 978-989-758-203-5, pages 89-100. DOI: 10.5220/0006053400890100


in Bibtex Style

@conference{kdir16,
author={Ignacio Arroyo-Fernández and Juan-Manuel Torres-Moreno and Gerardo Sierra and Luis Adrián Cabrera-Diego},
title={Automatic Text Summarization by Non-topic Relevance Estimation},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)},
year={2016},
pages={89-100},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006053400890100},
isbn={978-989-758-203-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2016)
TI - Automatic Text Summarization by Non-topic Relevance Estimation
SN - 978-989-758-203-5
AU - Arroyo-Fernández I.
AU - Torres-Moreno J.
AU - Sierra G.
AU - Cabrera-Diego L.
PY - 2016
SP - 89
EP - 100
DO - 10.5220/0006053400890100