Empowering the Model-driven Engineering of Robotic Applications using Ontological Semantics and Reasoning

Stefan Zander, Nadia Ahmed, Yingbing Hua

Abstract

This work discusses two scenarios in which the model-driven engineering of robotic applications can be improved using ontological semantics and reasoning. The objective of the presented approach is to facilitate reuse and interoperability between cooperating software and hardware components. Central to the presented approach is the usage of ontologies and description logics as knowledge representation frameworks for the axiomatic description of component metadata models. In the first scenario, we show how application templates can be created using the concept of placeholders in which requirements for integrating external components can be axiomatically specified and eligible components can be computed using subsumption reasoning. The second scenario extends this idea for the inference of compatibilities between cooperating components. The practical applicability of the approach is demonstrated by a concrete use case from the ReApp project.

References

  1. Alonso, D., Vicente-chicote, C., Ortiz, F., Pastor, J., and Alvarez, B. (2010). V3CMM: a 3-View Component Meta-Model for Model-Driven Robotic Software Development. Journal of Software Engineering for Robotics (JOSER), 1(January):3-17.
  2. Aßmann, U., Zschaler, S., and Wagner, G. (2006). Ontologies, meta-models, and the model-driven paradigm. In Ontologies for software engineering and software technology, pages 249-273. Springer.
  3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. (2003). The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press.
  4. Bastinos, A. S., Haase, P., Heppner, G., Zander, S., and Ahmed, N. (2014). ReApp Store - a semantic appstore for applications in the robotics domain. In International Semantic Web Conference (Industry Track).
  5. Brugali, B. D. (2015). Model-Driven Software Engineering in Practice. pages 155-166.
  6. Carbonera, J. L., Fiorini, S. R., Prestes, E., Jorge, V. a. M., Abel, M., Madhavan, R., Locoro, A., Goncalves, P., Haidegger, T., Barreto, M. E., and Schlenoff, C. (2013). Defining positioning in a core ontology for robotics. IEEE International Conference on Intelligent Robots and Systems, pages 1867-1872.
  7. Compton, M., Barnaghi, P. M., Bermudez, L., GarciaCastro, R., Corcho, O., Cox, S. J. D., Graybeal, J., Hauswirth, M., Henson, C. A., Herzog, A., Huang, V. A., Janowicz, K., Kelsey, W. D., Phuoc, D. L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K. R., Passant, A., Sheth, A. P., and Taylor, K. (2012). The ssn ontology of the w3c semantic sensor network incubator group. Journal of Web Semantics, 17:25-32.
  8. Diaconescu, I.-M. and Wagner, G. (2014). Towards a general framework for modeling, simulating and building sensor/actuator systems and robots for the web of things. In First Workshop on Model-Driven Robot Software Engineering (MORSE).
  9. Farges, J.-L. (2009). Robotic Ontology and Modelling - 3rd version.
  10. Gherardi, L. and Brugali, D. (2014). Modeling and reusing robotic software architectures: The HyperFlex toolchain. Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 6414-6420.
  11. Gil, Y. (2005). Description logics and planning. AI Magazine, 26(2):73-84.
  12. Guerin, K. R., Lea, C., Paxton, C., and Hager, G. D. (2015). A Framework for End-User Instruction of a Robot Assistant for Manufacturing. pages 6167-6174.
  13. Krötzsch, M., Simanc?ík, F., and Horrocks, I. (2014). Description logics. IEEE Intelligent Systems, 29:12-19.
  14. Lortal G, Dhouib S, G. S. (2011). Integrating ontological domain knowledge into a robotic dsl. In 2010 international conference on Models in software engineering MODELS?10, pages 401-414.
  15. Nilsson, a., Muradore, R., Nilsson, K., and Fiorini, P. (2009). Ontology for robotics: A roadmap. 2009 International Conference on Advanced Robotics.
  16. Patel-Schneider, P. F., Motik, B., and Grau, B. C. (2009). OWL 2 Web Ontology Language Direct Semantics. W3C recommendation, W3C.
  17. Prestes, E., Carbonera, J. L., Fiorini, S. R., Jorge, V. A. M., Abel, M., Madhavan, R., Locoro, A., Goncalves, P., Barreto, M. E., Habib, M., Chibani, A., Gérard, S., Amirat, Y., and Schlenoff, C. (2013). Towards a core ontology for robotics and automation. Robotics and Autonomous Systems, 61(11):1193 - 1204. Ubiquitous Robotics.
  18. Ramaswamy, A., Monsuez, B., and Tapus, A. (2014a). Architecture Modeling and Analysis Language for Designing Robotic Architectures. International Conference on Control Automation Robotics & Vision (ICARCV), 2014(December):10-12.
  19. Ramaswamy, A., Monsuez, B., and Tapus, A. (2014b). SafeRobots : A Model Driven Framework for Developing Robotic Systems. (Iros):1517-1524.
  20. Ramaswamy, A., Monsuez, B., and Tapus, A. (2014c). SafeRobots: A Model-Driven Approach for Designing Robotic Software Architectures. Collaboration Technologies and Systems (CTS), 2014 International Conference on, pages 131 - 134.
  21. Ringert, J. O., Rumpe, B., and Wortmann, A. (2013). MontiArcAutomaton: Modeling Architecture and Behavior of Robotic Systems. Workshops and Tutorials Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA, pages 10-12.
  22. Schlegel, C., Hassler, T., Lotz, A., and Steck, A. (2009). Robotic software systems: From code-driven to model-driven designs. In Advanced Robotics (ICAR) 2009 Intl. Conf. on, pages 1-8.
  23. W3C (2014). RDF 1.1 Concepts and Abstract Syntax. http://www.w3.org/TR/2014/REC-rdf11- concepts-20140225/.
  24. W3C OWL Working Group (2012). OWL 2 Web Ontology Language Document Overview (Second Edition) - W3C Recommendation 11 December 2012.
  25. Zander, S. and Awad, R. (2015). Expressing and reasoning on features of robot-centric workplaces using ontological semantics. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. to be published.
  26. Zander, S., Heppner, G., Neugschwandtner, G., Awad, R., Essinger, M., and Ahmed, N. (2016). A model-driven engineering approach for ROS using ontological semantics. CoRR, abs/1601.03998.
Download


Paper Citation


in Harvard Style

Zander S., Ahmed N. and Hua Y. (2016). Empowering the Model-driven Engineering of Robotic Applications using Ontological Semantics and Reasoning . In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016) ISBN 978-989-758-203-5, pages 192-198. DOI: 10.5220/0006086201920198


in Bibtex Style

@conference{keod16,
author={Stefan Zander and Nadia Ahmed and Yingbing Hua},
title={Empowering the Model-driven Engineering of Robotic Applications using Ontological Semantics and Reasoning},
booktitle={Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016)},
year={2016},
pages={192-198},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006086201920198},
isbn={978-989-758-203-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2016)
TI - Empowering the Model-driven Engineering of Robotic Applications using Ontological Semantics and Reasoning
SN - 978-989-758-203-5
AU - Zander S.
AU - Ahmed N.
AU - Hua Y.
PY - 2016
SP - 192
EP - 198
DO - 10.5220/0006086201920198