New Wavelet Based Spatiotemporal Fusion Method

Amal Ibnelhobyb, Ayoub Mouak, Amina Radgui, Ahmed Tamtaoui, Ahmed Er-Raji, Driss El Hadani, Mohamed Merdas, Faouzi Mohamed Smiej

Abstract

Satellite image sensors are able to give images at high temporal resolution as the MODIS sensor that gives an image every day but with low spatial resolution, or at high spatial resolution as the Landsat sensor that gives images at 30m but with a revisit cycle of 16 days. Thus, this sensors are not able to give images with both high spatial and high temporal resolution. This need has become more and more absolute for many applications. Therefore spatiotemporal fusion methods were proposed. By applying these methods on images from different sensors with different spatial and temporal resolution, we can take the advantage of the high spatial and high temporal resolution of these sensors. As a result we get an image with both high spatial and high temporal resolution. We introduce in this paper a new method, the Wavelet base Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (WESTARFM), which is an improvement of the ESTARFM method. It uses the principle of wavelet transform with the original ESTARFM method. We have applied our method to predict daily NDVI in a study site in an irrigated zone in the region of TADLA in MOROCCO. Results have been compared with other methods.

References

  1. Chemin, Y., & Honda, K. 2006. Spatiotemporal fusion of rice actual evapotranspiration with genetic algorithms and an agrohydrological model. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3462-3469 Chen, B., Huang, B., & Xu, B. 2015. Comparison of Spatiotemporal Fusion Models: A Review. Remote Sensing, 7(2), 1798-1835.
  2. Fu, D., Chen, B., Wang, J., Zhu, X., & Hilker, T. 2013. An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model. Remote Sensing, 5(12), 6346-6360.
  3. Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., & Yang, Y. 2014. Monitoring, Fusing Landsat and MODIS data for vegetation, (september), 47-60.
  4. Gao, F., Masek, J., Schwaller, M., & Hall, F. 2006. On the Blending of the MODIS and Landsat ETM + Surface Reflectance, 20771(2), 20794.
  5. Gevaert, C. M., & García-Haro, F. J. 2015. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sensing of Environment, 156, 34-44.
  6. Ghannam, S., Awadallah, M., Abbott, a. L., & Wynne, R. H. 2014. Multisensensor Multitemporal Data Fusion Using Wavelet Transform. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1(November), 121- 128.
  7. Hilker, T., Wulder, M. a., Coops, N. C., Linke, J., McDermid, G., Masek, J. G.,White, J. C., Gao, F. 2009. A new data fusion model for high spatial- and temporalresolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8), 1613-1627.
  8. Hilker, T., Wulder, M. A., Coops, N. C., Seitz, N., White, J. C., Gao, F., Masek, J. G.,Stenhouse, G. 2009. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensing of Environment, 113(9), 1988-1999.
  9. Huang, B., & Song, H. 2012. Spatiotemporal reflectance fusion via sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 50(10 PART1), 3707- 3716.
  10. Jarihani, A. A., McVicar, T. R., van Niel, T. G., Emelyanova, I. V., Callow, J. N., & Johansen, K. 2014. Blending landsat and MODIS data to generate multispectral indices: A comparison of “index-thenblend” and “Blend-Then-Index” approaches. Remote Sensing, 6(10), 9213-9238.
  11. Song, H., & Huang, B. 2013. Spatiotemporal satellite image fusion through one-pair image learning. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 1883-1896.
  12. Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J. G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610-2623.
  13. Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., & Lefsky, M. A. 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165-177.
Download


Paper Citation


in Harvard Style

Ibnelhobyb A., Mouak A., Radgui A., Tamtaoui A., Er-Raji A., El Hadani D., Merdas M. and Smiej F. (2016). New Wavelet Based Spatiotemporal Fusion Method . In Proceedings of the Fifth International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS, ISBN 978-989-758-200-4, pages 25-32. DOI: 10.5220/0006226800250032


in Bibtex Style

@conference{ictrs16,
author={Amal Ibnelhobyb and Ayoub Mouak and Amina Radgui and Ahmed Tamtaoui and Ahmed Er-Raji and Driss El Hadani and Mohamed Merdas and Faouzi Mohamed Smiej},
title={New Wavelet Based Spatiotemporal Fusion Method},
booktitle={Proceedings of the Fifth International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,},
year={2016},
pages={25-32},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006226800250032},
isbn={978-989-758-200-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fifth International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,
TI - New Wavelet Based Spatiotemporal Fusion Method
SN - 978-989-758-200-4
AU - Ibnelhobyb A.
AU - Mouak A.
AU - Radgui A.
AU - Tamtaoui A.
AU - Er-Raji A.
AU - El Hadani D.
AU - Merdas M.
AU - Smiej F.
PY - 2016
SP - 25
EP - 32
DO - 10.5220/0006226800250032