Fast Scalable Coding based on a 3D Low Bit Rate Fractal Video Encoder

Vitor de Lima, Thierry Moreira, Helio Pedrini, William Robson Schwartz

Abstract

Video transmissions usually occur at a fixed or at a small number of predefined bit rates. This can lead to several problems in communication channels whose bandwidth can vary along time (e.g. wireless devices). This work proposes a video encoding method for solving such problems through a fine rate control that can be dynamically adjusted with low overhead. The encoder uses fractal compression and a simple rate distortion heuristic to preprocess the content in order to speed up the process of switching between different bit rates. Experimental results show that the proposed approach can accurately transcode a preprocessed video sequence into a large range of bit rates with a small computational overhead.

References

  1. Ahmad, I., Wei, X., Sun, Y., and Zhang, Y.-Q. (2005). Video Transcoding: An Overview of Various Techniques and Research Issues. IEEE Transactions on Multimedia, 7:793-804.
  2. Chabarchine, A. and Creutzburg, R. (2001). 3D Fractal Compression for Real-Time Video. In 2nd International Symposium on Image and Signal Processing and Analysis, pages 570-573, Pula, Croatia.
  3. CIPR (2015). Sequences. http://www.cipr.rpi.edu/resource/ sequences/.
  4. Fisher, Y., Rogovin, D., and Shen, T. (1994). Fractal (SelfVQ) Encoding of Video Sequences. Visual Communications and Image Processing, 2308(1):1359-1370.
  5. Furao, S. and Hasegawa, O. (2004). A Fast No Search Fractal Image Coding Method. Signal Processing: Image Communication, 19(5):393-404.
  6. Garrido-Cantos, R., De Cock, J., Martnez, J., Van Leuven, S., and Garrido, A. (2013). Video Transcoding for Mobile Digital Television. Telecommunication Systems, 52(4):2655-2666.
  7. Glassner, A. S. (1990). Graphics Gems. In Multidimensional Sum Tables, pages 376-381. Academic Press Professional, Inc., San Diego, CA, USA.
  8. Hamzaoui, R. (1999). Fast Iterative Methods for Fractal Image Compression. Journal of Mathematical Imaging and Vision, 11:147-159.
  9. Helle, P., Lakshman, H., Siekmann, M., Stegemann, J., Hinz, T., Schwarz, H., Marpe, D., and Wiegand, T. (2013). A Scalable Video Coding Extension of HEVC. In Data Compression Conference, pages 201- 210, Snowbird, UT, USA.
  10. Hinz, T., Helle, P., Lakshman, H., Siekmann, M., Stegemann, J., Schwarz, H., Marpe, D., and Wiegand, T. (2013). An HEVC Extension for Spatial and Quality Scalable Video Coding. In Proc. SPIE, volume 8666, pages 866605-866605-16.
  11. Hurd, L., Gustavus, M., and Barnsley, M. (1992). Fractal Video Compression. In Thirty-Seventh IEEE Computer Society International Conference, pages 41-42.
  12. Jacquin, A. (1992). Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformations. IEEE Transactions on Image Processing, 1(1):18-30.
  13. Joset, D. and Coulombe, S. (2013). Visual Quality and File Size Prediction of H.264 Videos and Its Application to Video Transcoding for the Multimedia Messaging Service and Video on Demand. In IEEE International Symposium on Multimedia, pages 321-328.
  14. Krause, P. K. (2010). FTC - Floating Precision Texture Compression. Computers and Graphics, 34(5):594- 601.
  15. Lazar, M. and Bruton, L. (1994). Fractal Block Coding of Digital Video. IEEE Transactions on Circuits and Systems for Video Technology, 4(3):297-308.
  16. Li, H., Novak, M., and Forchheimer, R. (1993). FractalBased Image Sequence Compression Scheme. Optical Engineering, 32(7):1588-1595.
  17. Lima, V. and Pedrini, H. (2010). A Very Low Bit-rate Minimalist Video Encoder based on Matching Pursuits. In 15th Iberoamerican Congress on Pattern Recognition, pages 176-183, Sa˜o Paulo, SP, Brazil. SpringerVerlag.
  18. Lima, V., Schwartz, W. R., and Pedrini, H. (2011a). Fast Low Bit-Rate 3D Searchless Fractal Video Encoding. In 24th SIBGRAPI Conference on Graphics, Patterns and Images, pages 189-196, Maceio, AL, Brazil. IEEE.
  19. Lima, V., Schwartz, W. R., and Pedrini, H. (2011b). Fractal Image Encoding Using a Constant Size Domain Pool. In VII Workshop of Computer Vision, pages 137-142, Curitiba, PR, Brazil.
  20. Moon, Y. H., Kim, H. S., and Kim, J. H. (2000). A Fast Fractal Decoding Algorithm based on the Selection of an Initial Image. IEEE Transactions on Image Processing, 9(5):941-945.
  21. Øien, G. and Lepsøy, S. (1995). A Class of Fractal Image Coders with Fast Decoder Convergence, chapter Fractal Image Compression, pages 153-175. SpringerVerlag, London, UK.
  22. Ortega, A. and Ramchandram, K. (1998). Rate-Distortion Methods for Image and Video Compression. IEEE Signal Processing Magazine, 15(6):23-50.
  23. Pi, M., Basu, A., and Mandal, M. (2003). A New Decoding Algorithm based on Range Block Mean and Contrast Scaling. In International Conference on Image Processing, volume 3, pages II - 271-4, Barcelona, Spain.
  24. Quinlan, J. J., Zahran, A. H., Ramakrishnan, K. K., and Sreenan, C. J. (2015). Delivery of Adaptive Bit Rate Video: Balancing Fairness, Efficiency and Quality. In IEEE International Workshop on Local and Metropolitan Area Networks, pages 1-6.
  25. Said, A. (2003). Lossless Compression Handbook, chapter Arithmetic Coding. Communications, Networking, and Multimedia. Academic Press.
  26. Saupe, D., Ruhl, M., Hamzaoui, R., Grandi, L., and Marini, D. (1998). Optimal Hierarchical Partitions for Fractal Image Compression. In IEEE International Conference on Image Processing, pages 737-741, Chicago, IL, USA.
  27. Schwartz, W. R. and Pedrini, H. (2011). Improved Fractal Image Compression based on Robust Feature Descriptors. International Journal of Image and Graphics, 11(04):571-587.
  28. Schwarz, H., Marpe, D., and Wiegand, T. (2007). Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9):1103-1120.
  29. Tong, C. and Pi, M. (2001). Fast Fractal Image Encoding based on Adaptive Search. IEEE Transactions on Image Processing, 10(9):1269-1277.
  30. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):600 -612.
  31. Weinberger, M., Seroussi, G., and Sapiro, G. (1996). LOCO-I: A Low Complexity, Context-based, Lossless Image Compression Algorithm. In Data Compression Conference, pages 140-149, Snowbird, UT, USA. IEEE Computer Society.
  32. Wien, M., Cazoulat, R., Graffunder, A., Hutter, A., and Amon, P. (2007). Real-Time System for Adaptive Video Streaming Based on SVC. IEEE Transactions on Circuits and Systems for Video Technology, 17(9):1227-1237.
  33. Wu, X., Jackson, D., and Chen, H. (2005). Novel Fractal Image-Encoding Algorithm Based on a Full-BinaryTree Searchless Iterated Function System. Optical Engineering, 44(10):107002-107014.
  34. x264 (2016). Video Encoder. http://www.videolan.org/ developers/x264.html.
  35. Yao, Z. and Wilson, R. (2004). Hybrid 3D Fractal Coding with Neighbourhood Vector Quantisation. EURASIP Journal on Applied Signal Processing, 2004:2571- 2579.
  36. Yeh, C.-H., Jiang, S.-J. F., Lin, C.-Y., and Chen, M.-J. (2013). Temporal Video Transcoding Based on Frame Complexity Analysis for Mobile Video Communication. IEEE Transactions on Broadcasting, 59(1):38- 46.
  37. Zhai, G., Cai, J., Lin, W., Yang, X., and Zhang, W. (2008). Three Dimensional Scalable Video Adaptation via User-End Perceptual Quality Assessment. IEEE Transactions on Broadcasting, 54(3):719-727.
Download


Paper Citation


in Harvard Style

de Lima V., Moreira T., Pedrini H. and Schwartz W. (2017). Fast Scalable Coding based on a 3D Low Bit Rate Fractal Video Encoder . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 24-33. DOI: 10.5220/0006100400240033


in Bibtex Style

@conference{visapp17,
author={Vitor de Lima and Thierry Moreira and Helio Pedrini and William Robson Schwartz},
title={Fast Scalable Coding based on a 3D Low Bit Rate Fractal Video Encoder},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={24-33},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006100400240033},
isbn={978-989-758-225-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Fast Scalable Coding based on a 3D Low Bit Rate Fractal Video Encoder
SN - 978-989-758-225-7
AU - de Lima V.
AU - Moreira T.
AU - Pedrini H.
AU - Schwartz W.
PY - 2017
SP - 24
EP - 33
DO - 10.5220/0006100400240033