Segmentation of Retinal Ganglion Cells From Fluorescent Microscopy Imaging

Silvia Baglietto, Ibolya E. Kepiro, Gerrit Hilgen, Evelyne Sernagor, Vittorio Murino, Diego Sona


The visual information processing starts in the retina. The working mechanisms of its complex stratified circuits, in which ganglion cells play a central role, is still largely unknown. Understanding the visual coding is a challenging and active research area also requiring automated analysis of retinal images. It demands appropriate algorithms and methods for studying a network population of strictly entangled cells. Within this framework, we propose a combined technique for segmenting retinal ganglion cell (RGC) bodies, the output elements of the retina. The method incorporates a blob enhancement filtering in order to select the specific cell shapes, an active contour process for precise border segmentation and a watershed transform step which separates single cell contours in possible grouped segmentations. The proposed approach has been validated on fluorescent microscopy images of mouse retinas with promising results.


  1. Arteta, C., Lempitsky, V., Noble, J. A., and Zisserman, A. (2013). Learning to detect partially overlapping instances. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on.
  2. Baden, T., Berens, P., Franke, K., Rosón, M. R., Bethge, M., and Euler, T. (2016). The functional diversity of retinal ganglion cells in the mouse. Nature, 529(7586):345-350.
  3. Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. Journal of Comparative Neurology, 518(13):2405-2422.
  4. Beucher, S. and Lantuéjoul, C. (1979). Use of watersheds in contour detection. In International workshop on image processing, real-time edge and motion detection.
  5. Chan, T. F., Vese, L., et al. (2001). Active contours without edges. Image processing, IEEE transactions on, 10.
  6. Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever, M. A. (1998). Multiscale vessel enhancement filtering. In Medical Image Computing and ComputerAssisted InterventationMICCAI98, pages 130-137. Springer.
  7. Ge, Q., Li, C., Shao, W., and Li, H. (2015). A hybrid active contour model with structured feature for image segmentation. Signal Processing, 108:147-158.
  8. Gregory, R. L. (2015). Eye and Brain: The Psychology of Seeing: The Psychology of Seeing. Princeton university press.
  9. Gulyanon, S., Sharifai, N., Kim, M. D., Chiba, A., and Tsechpenakis, G. (2016). Crf formulation of active contour population for efficient three-dimensional neurite tracing. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pages 593-597. IEEE.
  10. Kim, I.-J., Zhang, Y., Meister, M., and Sanes, J. R. (2010). Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. The Journal of Neuroscience, 30(4):1452-1462.
  11. Berson, D. M., Castrucci, A. M., and Provencio, I. (2010).
  12. Lankton, S. and Tannenbaum, A. (2008). Localizing regionbased active contours. Image Processing, IEEE Transactions on, 17(11):2029-2039.
  13. Liu, J., White, J. M., and Summers, R. M. (2010). Automated detection of blob structures by hessian analysis and object scale. In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 841- 844. IEEE.
  14. Meijering, E. (2012). Cell segmentation: 50 years down the road [life sciences]. Signal Processing Magazine, IEEE, 29(5):140-145.
  15. Neumann, S., Hser, L., Ondreka, K., Auler, N., and Haverkamp, S. (2016). Cell type-specific bipolar cell input to ganglion cells in the mouse retina. Neuroscience, 316:420 - 432.
  16. Roska, B., Molnar, A., and Werblin, F. S. (2006). Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. Journal of Neurophysiology, 95(6):3810-3822.
  17. Wu, P., Yi, J., Zhao, G., Huang, Z.and Qiu, B., and Gao, D. (2015). Active contour-based cell segmentation during freezing and its application in cryopreservation. Biomedical Engineering, IEEE Transactions on, 62(1):284-295.
  18. Yezzi, A., Tsai, A., and Willsky, A. (2002). A fully global approach to image segmentation via coupled curve evolution equations. Journal of Visual Communication and Image Representation, 13(1):195-216.
  19. Zhang, C., Yarkony, J., and Hamprecht, F. A. (2014). Cell detection and segmentation using correlation clustering. In Medical Image Computing and ComputerAssisted Intervention-MICCAI 2014 , pages 9-16. Springer.
  20. Zijdenbos, A. P., Dawant, B. M., Margolin, R., Palmer, A. C., et al. (1994). Morphometric analysis of white matter lesions in mr images: method and validation. Medical Imaging, IEEE Transactions on, 13(4):716- 724.

Paper Citation

in Harvard Style

Baglietto S., Kepiro I., Hilgen G., Sernagor E., Murino V. and Sona D. (2017). Segmentation of Retinal Ganglion Cells From Fluorescent Microscopy Imaging . In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017) ISBN 978-989-758-215-8, pages 17-23. DOI: 10.5220/0006110300170023

in Bibtex Style

author={Silvia Baglietto and Ibolya E. Kepiro and Gerrit Hilgen and Evelyne Sernagor and Vittorio Murino and Diego Sona},
title={Segmentation of Retinal Ganglion Cells From Fluorescent Microscopy Imaging},
booktitle={Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017)},

in EndNote Style

JO - Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING, (BIOSTEC 2017)
TI - Segmentation of Retinal Ganglion Cells From Fluorescent Microscopy Imaging
SN - 978-989-758-215-8
AU - Baglietto S.
AU - Kepiro I.
AU - Hilgen G.
AU - Sernagor E.
AU - Murino V.
AU - Sona D.
PY - 2017
SP - 17
EP - 23
DO - 10.5220/0006110300170023