Improving Bayesian Mixture Models for Colour Image Segmentation with Superpixels

Thorsten Wilhelm, Christian Wöhler


The large computational demand is one huge drawback of Bayesian Mixture Models in image segmentation tasks. We describe a novel approach to reduce the computational demand in this scenario and increase the performance by using superpixels. Superpixels provide a natural approach to the reduction of the computational complexity and to build a texture model in the image domain. Instead of relying on a Gaussian mixture model as segmentation model, we propose to use a more robust model: a mixture of multiple scaled t-distributions. The parameters of the novel mixture model are estimated with Markov chain Monte Carlo in order to surpass local minima during estimation and to gain insight into the uncertainty of the resulting segmentation. Finally, an evaluation of the proposed segmentation is performed on the publicly available Berkeley Segmentation database (BSD500), compared to competing methods, and the benefit of including texture is emphasised.


  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11):2274-2282.
  2. Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5):898-916.
  3. Bardenet, R., Doucet, A., and Holmes, C. C. (2014). Towards scaling up markov chain monte carlo: an adaptive subsampling approach. In ICML, pages 405-413.
  4. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded up robust features. In European Conference on Computer Vision, pages 404-417. Springer.
  5. Belongie, S., Carson, C., Greenspan, H., and Malik, J. (1998). Color-and texture-based image segmentation using em and its application to content-based image retrieval. In Computer Vision, 1998. Sixth International Conference on, pages 675-682. IEEE.
  6. Benesova, W. and Kottman, M. (2014). Fast superpixel segmentation using morphological processing. In Proceedinks of the International Conference on Machine Vision and Machine Learning-MVML 2014.
  7. Borg, I. and Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer Science & Business Media.
  8. Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N.- M., Tao, D., Cheng, C.-Y., Aung, T., and Wong, T. Y. (2013). Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging, 32(6):1019-1032.
  9. Comaniciu, D. and Meer, P. (2002). Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603-619.
  10. Cour, T., Benezit, F., and Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), volume 2, pages 1124-1131. IEEE.
  11. Dahl, A. B. and Dahl, V. A. (2015). Dictionary based image segmentation. In Scandinavian Conference on Image Analysis, pages 26-37. Springer.
  12. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages 1-38.
  13. Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2):167-181.
  14. Forbes, F. and Wraith, D. (2014). A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering. Statistics and Computing, 24(6):971-984.
  15. Fulkerson, B., Vedaldi, A., Soatto, S., et al. (2009). Class segmentation and object localization with superpixel neighborhoods. In ICCV, volume 9, pages 670-677. Citeseer.
  16. Graham, R., Knuth, D., and Patashnik, O. (1994). Concrete Mathematics: A Foundation for Computer Science. A foundation for computer science. Addison-Wesley.
  17. Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). Dram: efficient adaptive mcmc. Statistics and Computing, 16(4):339-354.
  18. Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive metropolis algorithm. Bernoulli, pages 223- 242.
  19. Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6):610-621.
  20. Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97-109.
  21. Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593-1623.
  22. Kim, J., Fisher, J. W., Yezzi, A., C¸etin, M., and Willsky, A. S. (2005). A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Transactions on Image processing, 14(10):1486-1502.
  23. Korattikara, A., Chen, Y., and Welling, M. (2013). Austerity in mcmc land: Cutting the metropolis-hastings budget. arXiv preprint arXiv:1304.5299.
  24. Laws, K. I. (1980). Textured image segmentation. Technical report, DTIC Document.
  25. Maclaurin, D. and Adams, R. P. (2014). Firefly monte carlo: Exact mcmc with subsets of data. arXiv preprint arXiv:1403.5693.
  26. McLachlan, G. and Krishnan, T. (2007). The EM Algorithm and Extensions. Wiley Series in Probability and Statistics. Wiley.
  27. Nguyen, T. M. and Wu, Q. M. J. (2012). Robust student's-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Transactions on Medical Imaging, 31(1):103-116.
  28. Ntzoufras, I. (2011). Bayesian modeling using WinBUGS, volume 698. John Wiley & Sons.
  29. Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. Adaptative computation and machine learning series. University Press Group Limited.
  30. Ren, X. and Malik, J. (2003). Learning a classification model for segmentation. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 10-17. IEEE.
  31. Rousson, M., Brox, T., and Deriche, R. (2003). Active unsupervised texture segmentation on a diffusion based feature space. In Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference on, volume 2, pages II-699. IEEE.
  32. Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461-464.
  33. Thompson, D. R., Mandrake, L., Gilmore, M. S., and Casta n˜o, R. (2010). Superpixel endmember detection. IEEE Transactions on Geoscience and Remote Sensing, 48(11):4023-4033.
  34. Tierney, L. and Mira, A. (1999). Some adaptive monte carlo methods for bayesian inference. Statistics in medicine, 18(1718):2507-2515.
  35. Tighe, J. and Lazebnik, S. (2013). Superparsing. International Journal of Computer Vision, 101(2):329-349.
  36. Tortora, C., Franczak, B. C., Browne, R. P., and McNicholas, P. D. (2014). A mixture of coalesced generalized hyperbolic distributions. arXiv preprint arXiv:1403.2332.
  37. Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE transactions on image processing, 2(2):176-201.
  38. Wilhelm, T. and W öhler, C. (2016). Flexible mixture models for colour image segmentation of natural images. In 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pages 598-604.

Paper Citation

in Harvard Style

Wilhelm T. and Wöhler C. (2017). Improving Bayesian Mixture Models for Colour Image Segmentation with Superpixels . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-225-7, pages 443-450. DOI: 10.5220/0006111504430450

in Bibtex Style

author={Thorsten Wilhelm and Christian Wöhler},
title={Improving Bayesian Mixture Models for Colour Image Segmentation with Superpixels},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)},

in EndNote Style

JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, (VISIGRAPP 2017)
TI - Improving Bayesian Mixture Models for Colour Image Segmentation with Superpixels
SN - 978-989-758-225-7
AU - Wilhelm T.
AU - Wöhler C.
PY - 2017
SP - 443
EP - 450
DO - 10.5220/0006111504430450