Automated Multimodal Volume Registration based on Supervised 3D Anatomical Landmark Detection

Rémy Vandaele, François Lallemand, Philippe Martinive, Akos Gulyban, Sébastien Jodogne, Philippe Coucke, Pierre Geurts, Raphaël Marée

Abstract

We propose a new method for automatic 3D multimodal registration based on anatomical landmark detection. Landmark detectors are learned independantly in the two imaging modalities using Extremely Randomized Trees and multi-resolution voxel windows. A least-squares fitting algorithm is then used for rigid registration based on the landmark positions as predicted by these detectors in the two imaging modalities. Experiments are carried out with this method on a dataset of pelvis CT and CBCT scans related to 45 patients. On this dataset, our fully automatic approach yields results very competitive with respect to a manually assisted state-of-the-art rigid registration algorithm.

References

  1. Aneja, D., Vora, S. R., Camci, E. D., Shapiro, L. G., and Cox, T. C. (2015). Automated detection of 3d landmarks for the elimination of non-biological variation in geometric morphometric analyses. In IEEE 28th International Symposium on Computer-Based Medical Systems, pages 78-83. IEEE.
  2. Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Leastsquares fitting of two 3-d point sets. IEEE Transactions on pattern analysis and machine intelligence, (5):698-700.
  3. Breiman, L. (2001). Random forests. Machine Learning, 45(1):5-32.
  4. Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Van Gool, L. (2013). Random forests for real time 3d face analysis. International Journal of Computer Vision, 101(3):437-458.
  5. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al. (2012). 3d slicer as an image computing platform for the quantitative imaging network. Magnetic resonance imaging, 30(9):1323-1341.
  6. Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1):3-42.
  7. Hill, D. L., Batchelor, P. G., Holden, M., and Hawkes, D. J. (2001). Medical image registration. Physics in medicine and biology, 46(3):R1.
  8. Johnson, H., Harris, G., Williams, K., et al. (2007). Brainsfit: mutual information rigid registrations of wholebrain 3d images, using the insight toolkit. Insight J, pages 1-10.
  9. Kamath, S., Song, W., Chvetsov, A., Ozawa, S., Lu, H., Samant, S., Liu, C., Li, J. G., and Palta, J. R. (2011). An image quality comparison study between xvi and obi cbct systems. Journal of Applied Clinical Medical Physics, 12(2).
  10. Klein, S., Staring, M., Murphy, K., Viergever, M. A., and Pluim, J. P. (2010). Elastix: a toolbox for intensitybased medical image registration. IEEE Transactions on Medical Imaging, 29(1):196-205.
  11. Lukashevich, P., Zalesky, B., and Ablameyko, S. (2011). Medical image registration based on surf detector. Pattern Recognition and Image Analysis, 21(3):519- 521.
  12. Pluim, J. P., Maintz, J. A., and Viergever, M. A. (2003). Mutual-information-based registration of medical images: a survey. IEEE Transactions on medical imaging, 22(8):986-1004.
  13. Stern, O., Marée, R., Aceto, J., Jeanray, N., Muller, M., Wehenkel, L., and Geurts, P. (2011). Automatic localization of interest points in zebrafish images with tree-based methods. In IAPR International Conference on Pattern Recognition in Bioinformatics, pages 179-190. Springer.
  14. Wang, C.-W., Huang, C.-T., Hsieh, M.-C., Li, C.-H., Chang, S.-W., Li, W.-C., Vandaele, R., Marée, R., Jodogne, S., Geurts, P., et al. (2015). Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Transactions on medical imaging, 34(9):1890-1900.
  15. Zitova, B. and Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11):977-1000.
Download


Paper Citation


in Harvard Style

Vandaele R., Lallemand F., Martinive P., Gulyban A., Jodogne S., Coucke P., Geurts P. and Marée R. (2017). Automated Multimodal Volume Registration based on Supervised 3D Anatomical Landmark Detection . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 333-340. DOI: 10.5220/0006153803330340


in Bibtex Style

@conference{visapp17,
author={Rémy Vandaele and François Lallemand and Philippe Martinive and Akos Gulyban and Sébastien Jodogne and Philippe Coucke and Pierre Geurts and Raphaël Marée},
title={Automated Multimodal Volume Registration based on Supervised 3D Anatomical Landmark Detection},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={333-340},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006153803330340},
isbn={978-989-758-226-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Automated Multimodal Volume Registration based on Supervised 3D Anatomical Landmark Detection
SN - 978-989-758-226-4
AU - Vandaele R.
AU - Lallemand F.
AU - Martinive P.
AU - Gulyban A.
AU - Jodogne S.
AU - Coucke P.
AU - Geurts P.
AU - Marée R.
PY - 2017
SP - 333
EP - 340
DO - 10.5220/0006153803330340