Data Mining and ANFIS Application to Particulate Matter Air Pollutant Prediction. A Comparative Study

Mihaela Oprea, Marian Popescu, Sanda Florentina Mihalache, Elia Georgiana Dragomir


The paper analyzes two artificial intelligence methods for particulate matter air pollutant prediction, namely data mining and adaptive neuro-fuzzy inference system (ANFIS). Both methods provide predictive knowledge under the form of rule base, the first method, data mining, as an explicit rule base, and ANFIS as an internal fuzzy rule base used to perform predictions. In order to determine the optimal number of prediction model inputs, we have perform a correlation analysis between particulate matter and other air pollutants. This operation imposed NO2 and CO concentrations as inputs of the prediction model, together with four values of PM10 concentration (from current hour to three hours ago), the output of the model being the prediction of the next hour PM10 concentration. The two prediction models are investigated through simulation in different structures and configurations using SAS® and MATLAB® respectively. The results are compared in terms of statistical parameters (RMSE, MAPE) and simulation time.


  1. Ausati, S., Amanollahi, J., 2016. Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5. Atmospheric Environment, 142, 465- 474.
  2. Bae, J. K., Kim, J., 2011. Combining models from neural networks and inductive learning algorithms, Expert Systems with Applications, 38, 4839-4850.
  3. Breiman, L., Friedman, J. H., Olsen, R. A., Stone C. J., 1984. Classification and Regression Trees, Wadsworth. Belmont, California.
  4. Carbajal-Hernández, J. J., Sánchez-Fernández, L. P., Carrasco-Ochoa, J. A., Martínez-Trinidad, J.F., 2012. Assessment and prediction of air quality using fuzzy logic and autoregressive models. Atmospheric Environment, 60, 37-50.
  5. Domanska, D., Wojtylak, M., 2012. Application of fuzzy time series models for forecasting pollution concentrations. Expert Systems with Applications, 39, 7673-7679.
  6. Elangasinghe, M. A., Singhal, N., Dirks, K. N., Salmond, J. A., Samarasinghe, S, 2014. Complex time series analysis of PM10 and PM2.5 for a coastal site using neural network modelling and k-means clustering. Atmospheric Environment, 94, 106-116.
  7. Hajek, P., Olej, V., 2015. Predicting common air quality index - The case of Czech Microregions. Aerosol and Air Quality Research, 15, 544-555.
  8. Loya, N., Pineda, I.O., Pinto, D., Gómez-Adorno, H., Alemán, Y., 2013. Forecast of Air Quality Based on Ozone by Decision Trees and Neural Networks. Advances in Artificial Intelligence, LNCS vol. 7629, Springer, 97-106.
  9. Mekanik, F., Imteaz, M. A., Talei, A., 2015. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Climate Dynamics, 46 (9), 3097-3111.
  10. Mihalache, S. F., Popescu, M., Oprea, M., 2015. Particulate matter prediction using ANFIS modelling techniques. Proceedings of the 19th International Conference on System Theory, Control and Computing, ICSTCC 2015, 895-900.
  11. Mishra, D., Goyal, P., Upadhyay, A., 2015. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India. Atmospheric Environment, 102, 239-248.
  12. Ong, B. T., Sugiura, K., Zettsu, K., 2016. Dynamically pretrained deep recurrent neural networks using environmental monitoring data for predicting PM2.5. Neural Computing & Applications, 27, 1553-1566.
  13. Oprea, M., Mihalache, S. F., Popescu, M., 2016a. A comparative study of computational intelligence techniques applied to PM2.5 air pollution forecasting. Proceedings of the 6th International Conference on Computers Communications and Control, ICCCC 2016, 103-108.
  14. Oprea, M., Dragomir, E. G., Popescu, M., Mihalache, S. M., 2016b. Particulate Matter Air Pollutants Forecasting Using Inductive Learning Approach. REV. CHIM. (Bucharest), 67 (10), 2075-2081.
  15. Osrodka, L., Wojtylak, M., Krajny, E., Dunal, R., Klejnowski, 2005. Application data mining for forecasting of high-level air pollution in urbanindustrial area in southern Poland. Proceedings of the 10th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 664-668.
  16. Palit, A. K., Popovic, D., 2005. Computational intelligence in time series forecasting. Theory and Engineering Applications, Springer-Verlag. London
  17. Perez, P., Salini, G., 2008. PM2.5 forecasting in a large city: Comparison of three methods. Atmospheric Environment, 42, 8219-8224.
  18. Polat, K., Durduran, S.S., 2012. Usage of output-dependent data scaling in modeling and prediction of air pollution daily concentration values (PM10) in the city of Konya. Neural Computing & Applications, 21, 2153-2162.
  19. Prasad, K., Gorai, A.K., Goyal, P., 2016. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmospheric Environment, 128, 246-262.
  20. Riga, M., Tzima, F. A., Karatzas, K., Mitkas, P. A., 2009. Development and Evaluation of Data mining Models for Air Quality Prediction in Athens, Greece. In I. N. Athanasidis et al., Information Techologies in Environmental Engineering, Environmental Science and Engineering, Springer-Verlag, 331-344.
  21. SAS Enterprise Miner 13.2, Reference Help, 2016.
  22. Savic, M., Mihajlovic, I., Arsic, M., Živkovic, Ž., 2014. Adaptive-network-based fuzzy inference system (ANFIS) model-based prediction of the surface ozone concentration. Journal of the Serbian Chemical Society, 79 (10), 1323-1334.
  23. Schubert, S., Lee, T., 2011. Time series data mining with SAS Enterprise Miner?. SAS Global Forum 2011.
  24. Shad, R., Mesgari, M. S., Abkar, A., Shad, A., 2009. Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Computers, Environment and Urban Systems, 33, 472-481.
  25. Shahraiyni, H. T., Sodoudi, S., Kerschbaumer, A., Cubasch, U., 2015. A new structure identification scheme for ANFIS and its application for the simulation of virtual air pollution monitoring stations in urban areas. Engineering Applications of Artificial Intelligence, 41, 175-182.
  26. Siwek, K., Osowski, S., 2016. Data mining methods for prediction of air pollution. International Journal of Applied Mathematics and Computer Science, 26 (2), 467-478.
  27. Siwek, K., Osowski, S., Sowinski, M., 2011. Evolving the ensemble of predictors model for forecasting the daily average PM10. International Journal of Environment and Pollution, 46 (3/4), 199-215.
  28. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A., 2012. Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment, 60, 632-655.

Paper Citation

in Harvard Style

Oprea M., Popescu M., Mihalache S. and Dragomir E. (2017). Data Mining and ANFIS Application to Particulate Matter Air Pollutant Prediction. A Comparative Study . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 551-558. DOI: 10.5220/0006196405510558

in Bibtex Style

author={Mihaela Oprea and Marian Popescu and Sanda Florentina Mihalache and Elia Georgiana Dragomir},
title={Data Mining and ANFIS Application to Particulate Matter Air Pollutant Prediction. A Comparative Study},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},

in EndNote Style

JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Data Mining and ANFIS Application to Particulate Matter Air Pollutant Prediction. A Comparative Study
SN - 978-989-758-220-2
AU - Oprea M.
AU - Popescu M.
AU - Mihalache S.
AU - Dragomir E.
PY - 2017
SP - 551
EP - 558
DO - 10.5220/0006196405510558