An Evolutionary Traveling Salesman Approach for Multi-Robot Task Allocation

Muhammad Usman Arif, Sajjad Haider

Abstract

Multi-Robot Task Allocation (MRTA) addresses the problems related to an efficient job assignment in a team of robots. This paper expresses MRTA as a generalization of the Multiple Traveling Salesman Problem (MTSP) and utilizes evolutionary algorithms (EA) for optimal task assignment. The MTSP version of the problem is also solved using combinatorial optimization techniques and results are compared to demonstrate that EA can be effectively used for providing solutions to such problems.

References

  1. Al-Yafi, K., Lee, H., Mansouri, A., 2009. Mtap-masim: a multi-agent simulator for the mobile task allocation problem, in: Enabling Technologies: Infrastructures for Collaborative Enterprises, 2009. WETICE'09. 18th IEEE International Workshops on. IEEE, pp. 25-27.
  2. Atay, N., Bayazit, B., 2006. Mixed-integer linear programming solution to multi-robot task allocation problem.
  3. Badreldin, M., Hussein, A., Khamis, A., Badreldin, M., Hussein, A., Khamis, A., 2013. A Comparative Study between Optimization and Market-Based Approaches to Multi-Robot Task Allocation, A Comparative Study between Optimization and Market-Based Approaches to Multi-Robot Task Allocation. Adv. Artif. Intell. Adv. Artif. Intell. 2013, 2013, e256524. doi:10.1155/2013/256524, 10.1155/2013/256524
  4. Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., Kleywegt, A., 2003. Robot exploration with combinatorial auctions, in: Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on. IEEE, pp. 1957-1962.
  5. Carter, A.E., 2003. Design and application of genetic algorithms for the multiple traveling salesperson assignment problem. Virginia Polytechnic Institute and State University.
  6. Carter, A.E., Ragsdale, C.T., 2006. A new approach to solving the multiple traveling salesperson problem using genetic algorithms. Eur. J. Oper. Res. 175, 246- 257.
  7. Carter, A.E., Ragsdale, C.T., 2002. Scheduling pre-printed newspaper advertising inserts using genetic algorithms. Omega 30, 415-421.
  8. Coltin, B., Veloso, M., 2010. Mobile robot task allocation in hybrid wireless sensor networks, in: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, pp. 2932-2937.
  9. Czyzyk, J., Mesnier, M.P., Moré, J.J., 1998. The NEOS server. IEEE Comput. Sci. Eng. 5, 68-75.
  10. Dolan, E.D., 2001. NEOS Server 4.0 administrative guide. ArXiv Prepr. Cs0107034.
  11. Fourer, R., Gay, D.M., Kernighan, B.W., 1987. AMPL: A mathematical programming language. Citeseer.
  12. Gale, D., 1960. The theory of linear economic models. University of Chicago press.
  13. Garage, W., 2011. Turtlebot. Website Httpturtlebot Comlast Visit. 11-25.
  14. Gerkey, B.P., 2003. On multi-robot task allocation. University of Southern California.
  15. Gerkey, B.P., Mataric, M.J., 2004. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems. Int. J. Robot. Res. 23, 939-954. doi:10.1177/0278364904045564
  16. Gerkey, B.P., Mataric, M.J., 2003. On role allocation in RoboCup, in: Robot Soccer World Cup. Springer, pp. 43-53.
  17. Gropp, W., Moré, J., 1997. Optimization environments and the NEOS server. Approx. Theory Optim. 167- 182.
  18. Hunsberger, L., Grosz, B.J., 2000. A combinatorial auction for collaborative planning, in: MultiAgent Systems, 2000. Proceedings. Fourth International Conference on. IEEE, pp. 151-158.
  19. Hunt, J.E., Cooke, D.E., 1996. Learning using an artificial immune system. J. Netw. Comput. Appl. 19, 189-212.
  20. IBM CPLEX CP Optimizer [WWW Document], n.d. URL https://www01.ibm.com/software/commerce/optimization/cplexcp-optimizer/ (accessed 10.23.16).
  21. Jones, E.G., Dias, M.B., Stentz, A., 2011. Time-extended multi-robot coordination for domains with intra-path constraints. Auton. Robots 30, 41-56.
  22. Junjie, P., Dingwei, W., 2006. An ant colony optimization algorithm for multiple travelling salesman problem, in: First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC'06). IEEE, pp. 210-213.
  23. Koenig, N., Howard, A., 2004. Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator, in: In IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2149-2154.
  24. Kose, H., Tatlidede, U., Meriçli, C., Kaplan, K., Akin, H.L., 2004. Q-learning based market-driven multiagent collaboration in robot soccer, in: Proceedings of the Turkish Symposium on Artificial Intelligence and Neural Networks. pp. 219-228.
  25. Martinson, E., Arkin, R.C., 2003. Learning to role-switch in multi-robot systems, in: Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on. IEEE, pp. 2727-2734.
  26. Park, Y.-B., 2001. A hybrid genetic algorithm for the vehicle scheduling problem with due times and time deadlines. Int. J. Prod. Econ. 73, 175-188.
  27. Parker, L.E., 1998. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14, 220-240.
  28. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y., 2009. ROS: an opensource Robot Operating System, in: ICRA Workshop on Open Source Software. Kobe, Japan, p. 5.
  29. Shea, P.J., Alexander, K., Peterson, J., 2003. Group tracking using genetic algorithms. Proc Int. Soc. Inf. Fusion.
  30. Tang, F., Parker, L.E., 2005. Asymtre: Automated synthesis of multi-robot task solutions through software reconfiguration, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, pp. 1501-1508.
  31. Werger, B.B., Mataric, M.J., 2000. Broadcast of local eligibility for multi-target observation, in: Distributed Autonomous Robotic Systems 4. Springer, pp. 347- 356.
  32. Yuan, S., Skinner, B., Huang, S., Liu, D., 2013. A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. Eur. J. Oper. Res. 228, 72-82.
  33. Zlot, R., Stentz, A., 2006. Market-based multirobot coordination for complex tasks. Int. J. Robot. Res. 25, 73-101.
Download


Paper Citation


in Harvard Style

Arif M. and Haider S. (2017). An Evolutionary Traveling Salesman Approach for Multi-Robot Task Allocation . In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 567-574. DOI: 10.5220/0006197305670574


in Bibtex Style

@conference{icaart17,
author={Muhammad Usman Arif and Sajjad Haider},
title={An Evolutionary Traveling Salesman Approach for Multi-Robot Task Allocation},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2017},
pages={567-574},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006197305670574},
isbn={978-989-758-220-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - An Evolutionary Traveling Salesman Approach for Multi-Robot Task Allocation
SN - 978-989-758-220-2
AU - Arif M.
AU - Haider S.
PY - 2017
SP - 567
EP - 574
DO - 10.5220/0006197305670574