Hyperspectral Terrain Classification for Ground Vehicles

Christian Winkens, Florian Sattler, Dietrich Paulus

Abstract

Hyperspectral imaging increases the amount of information incorporated per pixel in comparison to normal RGB color cameras. Conventional spectral cameras as used in satellite imaging use spatial or spectral scanning during acquisition which is only suitable for static scenes. In dynamic scenarios, such as in autonomous driving applications, the acquisition of the entire hyperspectral cube at the same time is mandatory. We investigate the eligibility of novel snapshot hyperspectral cameras. It captures an entire hyperspectral cube without requiring moving parts or line-scanning. The sensor is tested in a driving scenario in rough terrain with dynamic scenes. Captured hyperspectral data is used for terrain classification utilizing machine learning techniques. The multi-class classification is evaluated against a novel hyperspectral ground truth dataset specifically created for this purpose.

References

  1. Camps-Valls, G. and Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6):1351-1362.
  2. Camps-Valls, G., Gomez-Chova, L., Mu n˜oz-Marí, J., VilaFrancés, J., and Calpe-Maravilla, J. (2006). Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 3(1):93-97.
  3. Camps-Valls, G., Tuia, D., G ómez-Chova, L., Jiménez, S., and Malo, J. (2011). Remote sensing image processing. Synthesis Lectures on Image, Video, and Multimedia Processing, 5(1):1-192.
  4. Cavigelli, L., Bernath, D., Magno, M., and Benini, L. (2016). Computationally efficient target classification in multispectral image data with deep neural networks. In SPIE Security+ Defence, pages 99970L99970L. International Society for Optics and Photonics.
  5. Chan, T. F., Golub, G. H., and LeVeque, R. J. (1982). Updating formulae and a pairwise algorithm for computing sample variances. In COMPSTAT 1982 5th Symposium held at Toulouse 1982, pages 30-41. Springer.
  6. Cheriyadat, A. and Bruce, L. M. (2003). Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. In Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International, volume 6, pages 3420-3422. IEEE.
  7. Degraux, K., Cambareri, V., Jacques, L., Geelen, B., Blanch, C., and Lafruit, G. (2015). Generalized inpainting method for hyperspectral image acquisition. In Image Processing (ICIP), 2015 IEEE International Conference on, pages 315-319. IEEE.
  8. Fauvel, M., Benediktsson, J. A., Chanussot, J., and Sveinsson, J. R. (2008). Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 46(11):3804-3814.
  9. Geelen, B., Tack, N., and Lambrechts, A. (2014). A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. In Spie Moems-Mems, pages 89740L-89740L. International Society for Optics and Photonics.
  10. Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1):55-63.
  11. Kriegler, F., Malila, W., Nalepka, R., and Richardson, W. (1969). Preprocessing transformations and their effects on multispectral recognition. In Remote Sensing of Environment, VI, volume 1, page 97.
  12. Li, J., Bioucas-Dias, J. M., and Plaza, A. (2010). Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Transactions on Geoscience and Remote Sensing, 48(11):4085-4098.
  13. Li, J., Bioucas-Dias, J. M., and Plaza, A. (2012). Spectralspatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields.IEEE Transactions on Geoscience and Remote Sensing, 50(3):809-823.
  14. Main, R., Cho, M. A., Mathieu, R., OKennedy, M. M., Ramoelo, A., and Koch, S. (2011). An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6):751-761.
  15. Melgani, F. and Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on geoscience and remote sensing, 42(8):1778-1790.
  16. Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., et al. (2009). Recent advances in techniques for hyperspectral image processing. Remote sensing of environment, 113:S110-S122.
  17. Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
  18. Tarabalka, Y., Fauvel, M., Chanussot, J., and Benediktsson, J. A. (2010). Svm-and mrf-based method for accurate classification of hyperspectral images.IEEE Geoscience and Remote Sensing Letters, 7(4):736-740.
  19. Tsagkatakis, G., Jayapala, M., Geelen, B., and Tsakalides, P. (2016). Non-negative matrix completion for the enhancement of snap-shot mosaic multispectral imagery.
  20. Tsagkatakis, G. and Tsakalides, P. (2015). Compressed hyperspectral sensing. In SPIE/IS&T Electronic Imaging, pages 940307-940307. International Society for Optics and Photonics.
  21. Tsagkatakis, G. and Tsakalides, P. (2016). A self-similar and sparse approach for spectral mosaic snapshot recovery. In 2016 IEEE International Conference on Imaging Systems and Techniques (IST), pages 341- 345.
  22. Tzagkarakis, G., Charle, W., and Tsakalides, P. (2016). Data compression for snapshot mosaic hyperspectral image sensors.
Download


Paper Citation


in Harvard Style

Winkens C., Sattler F. and Paulus D. (2017). Hyperspectral Terrain Classification for Ground Vehicles . In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017) ISBN 978-989-758-226-4, pages 417-424. DOI: 10.5220/0006275404170424


in Bibtex Style

@conference{visapp17,
author={Christian Winkens and Florian Sattler and Dietrich Paulus},
title={Hyperspectral Terrain Classification for Ground Vehicles},
booktitle={Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)},
year={2017},
pages={417-424},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006275404170424},
isbn={978-989-758-226-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, (VISIGRAPP 2017)
TI - Hyperspectral Terrain Classification for Ground Vehicles
SN - 978-989-758-226-4
AU - Winkens C.
AU - Sattler F.
AU - Paulus D.
PY - 2017
SP - 417
EP - 424
DO - 10.5220/0006275404170424