Efficient Processing of Semantically Represented Sensor Data

Farah Karim, Maria-Esther Vidal, Sören Auer

Abstract

Large collections of sensor data are semantically described using ontologies, e.g., the Semantic Sensor Network (SSN) ontology. Semantic sensor data are RDF descriptions of sensor observations from related sampling frames or sensors at multiple points in time, e.g., climate sensor data. Sensor values can be repeated in a sampling frame, e.g., a particular temperature value can be repeated several times, resulting in a considerable increase in data volume. We devise a factorized compact representation of semantic sensor data using linked data technologies to reduce repetition of same sensor values, and propose algorithms to generate collections of factorized semantic sensor data that can be managed by existing RDF triple stores. We empirically study the effectiveness of the proposed factorized representation of semantic sensor data. We show that the size of semantic sensor data is reduced by more than 50\% on average without loss of information. Further, we have evaluated the impact of this factorized representation of semantic sensor data on query execution. Results suggest that query optimizers can be empowered with semantics from factorized representations to generate query plans that effectively speed up query execution time on factorized semantic sensor data.

References

  1. Ali, M. I., Gao, F., and Mileo, A. (2015). Citybench: a configurable benchmark to evaluate rsp engines using smart city datasets. In International Semantic Web Conference, pages 374-389. Springer.
  2. Arenas, M., Gutierrez, C., and Pérez, J. (2009). Foundations of rdf databases. In Reasoning Web. Semantic Technologies for Information Systems, pages 158-204. Springer.
  3. Bakibayev, N., Kocisk É, T., Olteanu, D., and Zavodny, J. (2013). Aggregation and ordering in factorised databases. PVLDB, 6(14):1990-2001.
  4. Bakibayev, N., Olteanu, D., and Zavodny, J. (2012). FDB: A query engine for factorised relational databases. PVLDB, 5(11):1232-1243.
  5. Ceri, S., Gottlob, G., and Tanca, L. (1989). What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng., 1(1):146-166.
  6. Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al. (2012). The ssn ontology of the w3c semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web, 17:25-32.
  7. Fernández, J. D., Llaves, A., and Corcho, O. (2014). Efficient RDF interchange (ERI) format for RDF data streams. In The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part II, pages 244-259.
  8. Fernández, J. D., Martínez-Prieto, M. A., Guti érrez, C., Polleres, A., and Arias, M. (2013). Binary RDF representation for publication and exchange (HDT). J. Web Sem., 19:22-41.
  9. Gao, L., Bruenig, M., and Hunter, J. (2014). Semanticbased detection of segment outliers and unusual events for wireless sensor networks. arXiv preprint arXiv:1411.2188.
  10. Henson, C. A., Neuhaus, H., Sheth, A. P., Thirunarayan, K., and Buyya, R. (2009). An ontological representation of time series observations on the semantic sensor web.
  11. Huang, J., Abadi, D. J., and Ren, K. (2011). Scalable SPARQL querying of large RDF graphs. PVLDB, 4(11):1123-1134.
  12. Joshi, A. K., Hitzler, P., and Dong, G. (2013). Logical linked data compression. In 10th Extended Semantic Web Conf. ESWC, pages 170-184.
  13. Neumann, T. and Weikum, G. (2010). The RDF-3X engine for scalable management of RDF data. VLDB J., 19(1):91-113.
  14. Pan, J. Z., G ómez-Pérez, J. M., Ren, Y., Wu, H., Wang, H., and Zhu, M. (2014). Graph pattern based RDF data compression. In 4th Joint Int. Conf. on Semantic Technology (JIST).
  15. Patni, H., Henson, C., and Sheth, A. (2010). Linked sensor data. In Collaborative Technologies and Systems (CTS), 2010 International Symposium on, pages 362- 370. IEEE.
  16. Vidal, M., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., and Polleres, A. (2010). Efficiently joining group patterns in SPARQL queries. In 7th Extended Semantic Web Conf. (ESWC).
Download


Paper Citation


in Harvard Style

Karim F., Vidal M. and Auer S. (2017). Efficient Processing of Semantically Represented Sensor Data . In Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-246-2, pages 252-259. DOI: 10.5220/0006287002520259


in Bibtex Style

@conference{webist17,
author={Farah Karim and Maria-Esther Vidal and Sören Auer},
title={Efficient Processing of Semantically Represented Sensor Data},
booktitle={Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2017},
pages={252-259},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006287002520259},
isbn={978-989-758-246-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Efficient Processing of Semantically Represented Sensor Data
SN - 978-989-758-246-2
AU - Karim F.
AU - Vidal M.
AU - Auer S.
PY - 2017
SP - 252
EP - 259
DO - 10.5220/0006287002520259