Towards an Integrated Sustainability Evaluation of Energy Scenarios with Automated Information Exchange

Jan Sören Schwarz, Tobias Witt, Astrid Nieße, Jutta Geldermann, Sebastian Lehnhoff, Michael Sonnenschein

Abstract

To reshape energy systems towards renewable energy resources, decision makers need to decide today on how to make the transition. Energy scenarios are widely used to guide decision making in this context. While considerable effort has been put into developing energy scenarios, researchers have pointed out three requirements for energy scenarios that are not fulfilled satisfactorily yet: The development and evaluation of energy scenarios should (1) incorporate the concept of sustainability, (2) provide decision support in a transparent way and (3) be replicable for other researchers. To meet these requirements, we combine different methodological approaches: story-and-simulation (SAS) scenarios, multi-criteria decision-making (MCDM), information modeling and co-simulation. We show in this paper how the combination of these methods can lead to an integrated approach for sustainability evaluation of energy scenarios with automated information exchange. Our approach consists of a sustainability evaluation process (SEP) and an information model for modeling dependencies. The objectives are to guide decisions towards sustainable development of the energy sector and to make the scenario and decision support processes more transparent for both decision makers and researchers.

References

  1. Alcamo, J. (2008). The SAS Approach: Combining Qualitative and Quantitative Knowledge in Environmental Scenarios. In Alcamo, J., editor, Environmental Futures: The Practice of Environmental Scenario Analysis, volume v. 2 of Developments in integrated environmental assessment, pages 123-150. Elsevier, Amsterdam and Boston.
  2. Bastian, J., Clauß, C., Wolf, S., and Schneider, P. (2011). Master for Co-Simulation Using FMI. Proceedings of the 8th International Modelica Conference, pages 115-120.
  3. Belton, V. and Stewart, T. J. (2003). Multiple criteria decision analysis: An integrated approach. Kluwer Academic Publishers, Boston, Mass., 2. print edition.
  4. BMWi (2010). Federal Ministy of Economics and Technology. Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. https://www.bmwi.de/Redaktion/DE/Downloads/E/ energiekonzept-2010.pdf, accessed 2017-02-21, in German.
  5. Brans, J. P. and Vincke, P. (1985). Note-a preference ranking organisation method: (the promethee method for multiple criteria decision-making). Management Science, 31(6):647-656.
  6. Castro, A. G., Rocca-Serra, P., Stevens, R., Taylor, C., Nashar, K., Ragan, M. a., and Sansone, S.-A. (2006). The use of concept maps during knowledge elicitation in ontology development processes-the nutrigenomics use case. BMC bioinformatics, 7:267.
  7. Deutscher Bundestag (2005). German Bundestag. Gesetz über die Elektrizitäts- und Gasverordnung (Energiewirtschaftsgesetz): EnWG. http://www.gesetzeim-internet.de/enwg 2005/BJNR197010005.html, accessed 2017-02-21, in German.
  8. Deutscher Bundestag (2014). German Bundestag. Gesetz für den Ausbau erneuerbarer Energien (ErneuerbareEnergien-Gesetz): EEG 2014. http://www.gesetzeim-internet.de/eeg 2014/BJNR106610014.html, accessed 2017-02-21, in German.
  9. Elkington, J. (2002). Cannibals with forks: The triple bottom line of 21st century business. Capstone, Oxford, reprint edition.
  10. European Commission (2014). Communication from the European Commission: A policy framework for climate and energy in the period from 2020 to 2030. http://eur-lex.europa.eu/legalcontent/EN/ALL/?uri=CELEX:52014DC0015, accessed 2017-02-21.
  11. Fensel, D. (2004). Ontologies: A silver bullet for Knowledge Management and Electronic-Commerce. Springer-Verlag, Berlin.
  12. Gausemeier, J., Fink, A., and Schlake, O. (1998). Scenario management: An approach to develop future potentials. Technological Forecasting and Social Change, 59:111-130.
  13. Grunwald, A., Dieckhoff, C., Fischedick, M., Höffler, F., Mayer, C., and Weimer-Jehle, W. (2016). Consulting with energy scenarios: Requirements for scientific policy advice. Series on Science-Based Policy Advice. acatech/Leopoldina/Akademienunion (Eds.).
  14. Hughes, N. and Strachan, N. (2010). Methodological review of UK and international low carbon scenarios. Energy Policy, 38(10):6056-6065.
  15. International Energy Agency (2016). ergy Outlook 2016: Executive http://www.worldenergyoutlook.org, 2016-12-01.
  16. Keles, D., Möst, D., and Fichtner, W. (2011). The development of the German energy market until 2030-A critical survey of selected scenarios. Energy Policy, 39(2):812-825.
  17. Kowalski, K., Stagl, S., Madlener, R., and Omann, I. (2009). Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research, 197(3):1063-1074.
  18. Kronenberg, T., Martinsen, D., Pesch, T., Sander, M., Fischer, W., Hake, J.-F., Kuckshinrichs, W., and Markewitz, P. (2012). Energieszenarien für Deutschland: Stand der Literatur und methodische Auswertung. In Bruhns, H., editor, Energiewende - Aspekte, Optionen, Herausforderungen, pages 132-168. Deutsche Physikalische Gesellschaft - Arbeitskreis Energie, Berlin, in German.
  19. Lee, Y. T. (1999). Information modeling: From design to implementation. Proceedings of the second world manufacturing congress, pages 315-321.
  20. Lehnhoff, S., Nannen, O., Rohjans, S., Schlogl, F., Dalhues, S., Robitzky, L., Hager, U., and Rehtanz, C. (2015). Exchangeability of power flow simulators in smart grid co-simulations with mosaik. In Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop on, pages 1-6.
  21. Madlener, R., Kowalski, K., and Stagl, S. (2007). New ways for the integrated appraisal of national energy scenarios: The case of renewable energy use in Austria. Energy Policy, 35(12):6060-6074.
  22. Oberschmidt, J., Geldermann, J., Ludwig, J., and Schmehl, M. (2010). Modified promethee approach for assessing energy technologies. International Journal of Energy Sector Management, 4(2):183-212.
  23. Rehtanz, C. and Guillaud, X. (2016). Real-time and cosimulations for the development of power system monitoring, control and protection. In 2016 Power Systems Computation Conference (PSCC), pages 1- 20.
  24. Schloegl, F., Rohjans, S., Lehnhoff, S., Velasquez, J., Steinbrink, C., and Palensky, P. (2015). Towards a Classification Scheme for Co-Simulation Approaches in Energy Systems. International Symposium on Smart Electric Distribution Systems and Technologies. IEEE/IES, pages 2-7.
  25. Simon-Cuevas, A., Ceccaroni, L., Rosete-Suarez, A., and Suarez-Rodriguez, A. (2009). A Formal Modeling Method Applied to Environmental-Knowledge Engineering. International Conference on Complex, Intelligent and Software Intensive Systems.
  26. Steinbrink, C. and Lehnhoff, S. (2016). Quantifying probabilistic uncertainty in smart grid co-simulation. In 2016 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), pages 1- 6.
  27. Steinhilber, S. (2015). Exploring options for the harmonisation of renewable energy support policies in the EU using multi-criteria decision analysis. Dissertation, Karlsruher Institut für Technologie.
  28. Stewart, T. J., French, S., and Rios, J. (2013). Integrating multicriteria decision analysis and scenario planning - Review and extension. Omega, 41(4):679-688.
  29. Uslar, M., Specht, M., Rohjans, S., Trefke, J., and Gonzalez Vazquez, J. (2012). The IEC Common Information Model. Springer, Berlin.
  30. van der Heijden, K. (1996). Scenarios: The art of strategic conversation. John Wiley & Sons, Chichester, England and New York.
  31. Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., and Zhao, J.-H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9):2263-2278.
  32. Weimer-Jehle, W., Buchgeister, J., Hauser, W., Kosow, H., Naegler, T., Poganietz, W.-R., Pregger, T., Prehofer, S., von Recklinghausen, A., Schippl, J., and Vögele, S. (2016). Context scenarios and their usage for the construction of socio-technical energy scenarios. Energy, 111:956-970.
Download


Paper Citation


in Harvard Style

Schwarz J., Witt T., Nieße A., Geldermann J., Lehnhoff S. and Sonnenschein M. (2017). Towards an Integrated Sustainability Evaluation of Energy Scenarios with Automated Information Exchange . In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-241-7, pages 188-199. DOI: 10.5220/0006302101880199


in Bibtex Style

@conference{smartgreens17,
author={Jan Sören Schwarz and Tobias Witt and Astrid Nieße and Jutta Geldermann and Sebastian Lehnhoff and Michael Sonnenschein},
title={Towards an Integrated Sustainability Evaluation of Energy Scenarios with Automated Information Exchange},
booktitle={Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},
year={2017},
pages={188-199},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006302101880199},
isbn={978-989-758-241-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Towards an Integrated Sustainability Evaluation of Energy Scenarios with Automated Information Exchange
SN - 978-989-758-241-7
AU - Schwarz J.
AU - Witt T.
AU - Nieße A.
AU - Geldermann J.
AU - Lehnhoff S.
AU - Sonnenschein M.
PY - 2017
SP - 188
EP - 199
DO - 10.5220/0006302101880199