Enhancing JSON to RDF Data Conversion with Entity Type Recognition

Fellipe Freire, Crishane Freire, Damires Souza

Abstract

Nowadays, many Web data sources and APIs make their data available on the Web in semi-structured formats such as JSON. However, JSON data cannot be directly used in the Web of data, where principles such as URIs and semantically named links are essential. Thus it is necessary to convert JSON data into RDF data. To this end, we have to consider semantics in order to provide data reference according to domain vocabularies. To help matters, we present an approach which identifies JSON metadata, aligns them with domain vocabulary terms and converts data into RDF. In addition, along with the data conversion process, we provide the identification of the semantically most appropriate entity types to the JSON objects. We present the definitions underlying our approach and results obtained with the evaluation.

References

  1. Alexe, B., Burdick, D. Hernandez, M., Koutrika, G., Krishnamurthy, R., Popa, L., Stanoi, I., and Wisnesky, R., 2013. High-Level Rules for Integration and Analysis of Data: New Challenges. In Search of Elegance in the Theory and Practice of Computation: Essays Dedicated to Peter Buneman. Springer Berlin Heidelberg. Pp 36-55.
  2. Bernardo, I. R., Mota, M. S., Santanchè, A., 2012. Extraindo e Integrando Semanticamente Dados de Múltiplas Planilhas Eletrônicas a Partir do Reconhecimento de Sua Natureza. In Proceedings of Brazilian Symposium on Databases (SBBD 2012): 256-263
  3. BIBO, 2016. Available at http://lov.okfn.org/dataset/lov/vocabs/bibo. Last access on December, 2016.
  4. CBO, 2016. Available at http://comicmeta.org/cbo/. Last access on December, 2016.
  5. David, J., Euzenat, J., Scharffe, F., and Trojahn dos Santos, C., 2011. The alignment api 4.0. In Semantic web journal 2 (1): 3-10, 2011.
  6. DBPEDIA, 2016. Available on http://wiki.dbpedia.org/. Last access on December, 2016.
  7. DC, 2016. Available at http://dublincore.org/documents/2008/01/14/dcmitype-vocabulary/. Last access on December, 2016.
  8. DOAP, 2016. Available on http://lov.okfn.org/dataset/lov/vocabs/doap. Last access on December, 2016.
  9. Fanizzi, N., dAmato, C., and Esposito, F. 2012. Mining linked open data through semi-supervised learning methods based on self-training. In Proceedings of the IEEE Sixth International Conference on Semantic Computing (ICSC), 2012. IEEE, Palermo, Italy, pp. 277-284, 2012.
  10. Heath, T. and Bizer, C. 2011. Linked data: Evolving the web into a global data space. In Synthesis lectures on the semantic web: theory and technology. (1): 1-136, 2011.
  11. JSON Documentation. Available at http://json.org/. Last access on December, 2016.
  12. Klettke, M., Störl, U., Scherzinger ,S., 2015. In: OTH Regensburg - BTW, 2015
  13. LOV Documentation, 2016. Available on https://lov.okfn.org/dataset/lov/. Last access on December, 2016.
  14. RDF Documentation, 2016. Available on www.w3.org/RDF/. Last access on December, 2016.
  15. Rijsbergen, C. J. 1979. Information Retrieval, 2nd Ed. Stoneham, MA: Butterworths, 1979.
  16. Silva, A.; Chaves, L. C.; Souza, D. 2013. A Domain-based Approach to Publish Data on the Web. In Proceedings of the 15th International Conference on Information Integration and Web-based Applications & Services (iiWAS2013) 2-6 December, 2013, Vienna, Austria.
  17. Sleeman, J., Finin, T., & Joshi, A., 2015. Entity type recognition for heterogeneous semantic graphs. In: AI Magazine, 36(1), 75-87.
  18. SWPO, 2016. Available at http://lov.okfn.org/dataset/lov/vocabs/swpo. Last access on December, 2016.
  19. Taheriyan, M., Knoblock, C. A., Szekely, P., & Ambite, J. L., 2014. A scalable approach to learn semantic models of structured sources. In Semantic Computing (ICSC), 2014 IEEE International Conference on (pp. 183-190). IEEE.
  20. Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P., & Aberer, K., 2013. Trank: Ranking entity types using the web of data. In International Semantic Web Conference (pp. 640-656). Springer Berlin Heidelberg.
Download


Paper Citation


in Harvard Style

Freire F., Freire C. and Souza D. (2017). Enhancing JSON to RDF Data Conversion with Entity Type Recognition . In Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-758-246-2, pages 97-106. DOI: 10.5220/0006302900970106


in Bibtex Style

@conference{webist17,
author={Fellipe Freire and Crishane Freire and Damires Souza},
title={Enhancing JSON to RDF Data Conversion with Entity Type Recognition},
booktitle={Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2017},
pages={97-106},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006302900970106},
isbn={978-989-758-246-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 13th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Enhancing JSON to RDF Data Conversion with Entity Type Recognition
SN - 978-989-758-246-2
AU - Freire F.
AU - Freire C.
AU - Souza D.
PY - 2017
SP - 97
EP - 106
DO - 10.5220/0006302900970106